Collective Activity Detection using Hinge-loss Markov Random Fields

Ben London, Sameh Khamis, Stephen H. Bach, Bert Huang, Lise Getoor, Larry Davis
Motivation
Motivation

- Classify the individual actions
Motivation

- Classify the individual actions
- Track the multiple targets
Intuition

- Action transitions are unlikely
Intuition

- Action transitions are typically not arbitrary
Intuition

- Individual actions are consistent in proximity
Intuition

- Individual actions are consistent in proximity
Related Work

• Original action recognition work focused on the isolated person case

 Shuldt et al., ICPR 2004

 Blank et al., CVPR 2005

• Following work investigated either pairwise interactions or group activity as the activity of the majority

 Hand Shaking Hugging Kicking

 Ryoo and Agarwal, ICCV 2009

 Activity Queue
 Talk

 Lan et al., NIPS 2010
Related Work

More recent work looked at coupling activity recognition, tracking, and scene labeling

Choi and Savarese, ECCV 2012

While others modeled activities at multiple levels: individual, group, and inter-group

Amer et al., ECCV 2012
Our Approach

An Introduction to Hinge-loss MRFs and PSL
Our Approach

• Problem needs **scalable** solution that handles complex dependencies and tracking constraints

• *Hinge-loss Markov Random fields* (HL-MRFs) are a new class of models that meet these goals
 - Log-concave densities over continuous variables
 - Support fast inference of global solutions
 - New paper on structured prediction at UAI 2013

• *Probabilistic soft logic* (PSL) allows easy encoding of intuitions
 - Converts logical rules to HL-MRFs
Hinge-loss Markov Random Fields

\[p(Y|X) = \frac{1}{Z} \exp \left[- \sum_{j=1}^{m} w_j \max\{\ell_j(Y, X), 0\}^{p_j} \right] \]

- Continuous variables in \([0,1]\)
- Potentials are hinge-loss functions
- Subject to arbitrary linear constraints
- Log-concave!
Inferring Most Probable Explanations

- **Objective:**

\[
\arg \max_Y p(Y|X) = \arg \min_Y \sum_{j=1}^{m} w_j \max\{\ell_j(Y, X), 0\}^{p_j}
\]

- Convex optimization
- Decomposition-based inference algorithm using the ADMM framework
Alternating Direction Method of Multipliers

- Inference with ADMM is fast, scalable, and straightforward
- Optimize subproblems (ground rules) independently, in parallel
- Auxiliary variables enforce consensus across subproblems
Weight Learning

• Various methods to learn from training data:
 o approximate maximum likelihood
 o maximum pseudolikelihood
 o large-margin estimation
 o [Broecheler et al., UAI 2010; Bach et al., UAI 2013]

• State-of-the-art learning performance on
 o Collective classification
 o Social-trust prediction
 o Preference prediction
 o Image reconstruction

• Here we use approximate maximum likelihood
Probabilistic Soft Logic

• HL-MRFs are easy to define
• Hinge-losses can generalize logical operators

\[\text{1.8: } \text{Doing}(X, \text{ walking}) \leftarrow \text{SamePerson}(X, Y) \land \text{Doing}(Y, \text{ walking}) \]

• Lukasiewicz T-norm

 \(A \lor B = \min\{1, A + B\} \)

 \(A \land B = \max\{0, A + B - 1\} \)
Grounding to HL-MRFs

- Ground out first-order rules
 - Variables: soft-truth values of atoms
 - Hinge-loss potentials: weighted distances to satisfaction of ground rules

- \(w : A \rightarrow B \)
 \(w : \neg A \lor B \)
 \(w \times (1 - \min\{1 - A + B, 1\}) \)
 \(w \times \max\{A - B, 0\} \)

- The effect is assignments that satisfy weighted rules more are more probable
A PSL Model for Collective Activity Detection

A Collective Activity Detection Model in PSL
Features: Low-Level

- Histogram of Oriented Gradients (HOG) [Dalal & Triggs, CVPR 2005]

- Describe image patches by a distribution of gradient magnitudes binned by angle

- We train SVMs to predict on HOG features
Features: Low-Level

• Action Context Descriptor (ACD) [Lan et al, NIPS 2010]

• Model context by aggregating SVM outputs on HOG features across multiple spatiotemporal neighborhoods

• E.g, actions like talking cannot be represented by the HOG features of one person
Local Information

- Use low-level detectors

\[w_{\text{local,}a} : \text{Doing}(X, a) \leftarrow \text{Detector}(X, a) \]

- E.g.,

\[w_{\text{local,} \text{walking}} : \text{Doing}(X, \text{walking}) \leftarrow \text{Detector}(X, \text{walking}) \]
\[w_{\text{local,} \text{talking}} : \text{Doing}(X, \text{talking}) \leftarrow \text{Detector}(X, \text{talking}) \]
\[w_{\text{local,} \text{waiting}} : \text{Doing}(X, \text{waiting}) \leftarrow \text{Detector}(X, \text{waiting}) \]

\[: (\text{defined for all actions}) \]
Frame Consistency

- Most people in frame do the same action
- Ground truth is aggregate of descriptors

\[w_{\text{frame},a} : \text{Doing}(X, a) \leftarrow \text{Frame}(X, F) \land \text{FrameAction}(F, a) \]
Effect of Proximity

- People that are close (in frame) are likely doing the same action

\[w_{\text{prox},a} : \text{Doing}(X, a) \leftarrow \text{Close}(X, Y) \land \text{Doing}(Y, a) \]

- Closeness is measured via a radial basis function
Tracking

• Persistence rules
 o People are likely to continue doing the same action

\[w_{\text{persist},a} : \text{Doing}(Y, a) \leftarrow \text{SamePerson}(X, Y) \land \text{Doing}(X, a) \]

 o Requires identity maintenance for SamePerson

• Identity maintenance

\[w_{\text{id}} : \text{Same}(X, Y) \leftarrow \text{Sequential}(X, Y) \land \text{Close}(X, Y) \]
Action Transitions

• Can define rules for transitioning between actions

\[w_{trans,a,b} : \text{Doing}(Y, b) \leftarrow \text{SamePerson}(X, Y) \land \text{Doing}(X, a) \]

• Defined over all pairs of actions \((a,b)\)
• Effect is similar to the state transition matrix of an HMM
Priors and Constraints

• Prior beliefs
 o Encode prior beliefs about SamePerson and Doing predicates

\[w : \sim \text{SamePerson}(X, Y) \quad w : \sim \text{Doing}(X, a) \]

• Constraints
 o Functional constraint on Doing ensures that soft-truth values for each person sum to 1
 o Partial-functional constraint on SamePerson ensures that soft-truth values for each person sum to at most 1
Experiments
Dataset

- University of Michigan, “Collective Activity”
- Annotated activities, poses, trajectories
 - We don’t use poses, trajectories
 - We only use activity annotations for training
- 2 common splits:
 - 5-label: [crossing, walking, waiting, talking, queueing]
 - 44 sequences
 - 6-label: [crossing, waiting, talking, queueing, dancing, jogging]
 - 63 sequences

http://www.eecs.umich.edu/vision/activity-dataset.html
PSL Model

\[w_{id} : \text{Same}(X, Y) \leftarrow \text{Sequential}(X, Y) \land \text{Close}(X, Y) \]

\[w_{idprior} : \sim\text{SamePerson}(X, Y) \]

For all actions \(a \):

\[w_{local,a} : \text{Doing}(X, a) \leftarrow \text{Detector}(X, a) \]
\[w_{frame,a} : \text{Doing}(X, a) \leftarrow \text{Frame}(X, F) \land \text{FrameAction}(F, a) \]
\[w_{prox,a} : \text{Doing}(X, a) \leftarrow \text{Close}(X, Y) \land \text{Doing}(Y, a) \]
\[w_{persist,a} : \text{Doing}(Y, a) \leftarrow \text{SamePerson}(X, Y) \land \text{Doing}(X, a) \]
\[w_{prior,a} : \sim\text{Doing}(X, a) \]
Methodology

• Measure benefit of high-level reasoning
 o One model using HOG SVM scores, another using ACD SVM scores
 o Measure lift over low-level detectors

• Leave-one-out cross-validation
 o Train on all but one sequence
 o Test on hold-out
 o Accumulate test statistics over all hold-outs
 • Compensates for varying lengths and label distributions
Results

<table>
<thead>
<tr>
<th></th>
<th>5-Action</th>
<th></th>
<th>6-Action</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy</td>
<td>F1</td>
<td>Accuracy</td>
<td>F1</td>
</tr>
<tr>
<td>HOG SVM</td>
<td>0.474</td>
<td>0.481</td>
<td>0.596</td>
<td>0.582</td>
</tr>
<tr>
<td>HL-MRF + HOG</td>
<td>0.598</td>
<td>0.603</td>
<td>0.793</td>
<td>0.789</td>
</tr>
<tr>
<td>ACD SVM</td>
<td>0.675</td>
<td>0.678</td>
<td>0.835</td>
<td>0.835</td>
</tr>
<tr>
<td>HL-MRF + ACD</td>
<td>0.692</td>
<td>0.693</td>
<td>0.860</td>
<td>0.860</td>
</tr>
</tbody>
</table>
What about MLNs?

- Also compare against an identical Markov logic network (MLN) model
 - Inference and MLE in MLNs are generally intractable
 - MaxWalkSat for learning
 - MCSAT for test-time inference
Results

<table>
<thead>
<tr>
<th>Model Type</th>
<th>5-Action</th>
<th></th>
<th></th>
<th>6-Action</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy</td>
<td>F1</td>
<td></td>
<td>Accuracy</td>
<td>F1</td>
</tr>
<tr>
<td>HOG SVM</td>
<td>0.474</td>
<td>0.481</td>
<td></td>
<td>0.596</td>
<td>0.582</td>
</tr>
<tr>
<td>MLN + HOG</td>
<td>0.657</td>
<td>0.657</td>
<td></td>
<td>0.809</td>
<td>0.803</td>
</tr>
<tr>
<td>HL-MRF + HOG</td>
<td>0.598</td>
<td>0.603</td>
<td></td>
<td>0.793</td>
<td>0.789</td>
</tr>
<tr>
<td>ACD SVM</td>
<td>0.675</td>
<td>0.678</td>
<td></td>
<td>0.835</td>
<td>0.835</td>
</tr>
<tr>
<td>MLN + ACD</td>
<td>0.687</td>
<td>0.685</td>
<td></td>
<td>0.850</td>
<td>0.850</td>
</tr>
<tr>
<td>HL-MRF + ACD</td>
<td>0.692</td>
<td>0.693</td>
<td></td>
<td>0.860</td>
<td>0.860</td>
</tr>
</tbody>
</table>
Speed

Average running time

<table>
<thead>
<tr>
<th></th>
<th>Cora</th>
<th>Citeseer</th>
<th>Epinions</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLN</td>
<td>110.9 s</td>
<td>184.3 s</td>
<td>212.4 s</td>
<td>344.2 s</td>
</tr>
<tr>
<td>HL-MRF</td>
<td>0.4 s</td>
<td>0.7 s</td>
<td>1.2 s</td>
<td>0.6 s</td>
</tr>
</tbody>
</table>

[Bach et al., UAI 2013]

- MLN inference is **slow**
 - MCSAT is poly-time, but slow

- HL-MRF inference is **fast**
 - In practice, we find that inference scales linearly with the number of potentials
Improved PSL Model

- **Scene consistency**
 - Certain sequences tend to have a single majority action
 - Improved performance in [Khamis et al., ECCV 2012]

- **In-frame/sequence interactions**
 - E.g., Maybe *walking* and *crossing* frequently co-occur together?

- **Latent variables**
 - E.g., Group actors into same-action clusters, reason about cluster interactions
Conclusion

• HL-MRFs are a powerful class of graphical models
 o Capable of fast MPE inference
 o Faster inference than discrete models (e.g., MLNs)

• PSL facilitates easy construction of HL-MRFs
 o First-order-logic syntax

• Using HL-MRFs/PSL for high-level vision yields significant improvement over low/mid-level detectors
Thank you!

- PSL info at http://psl.cs.umd.edu/
- S. Khamis, V. I. Morariu, L. S. Davis. Combining Per-Frame and Per-Track Cues for Multi-Person Action Recognition. ECCV, 2012
- T. Lan, Y. Wang, W. Yang, G. Mori: Beyond Actions: Discriminative Models for Contextual Group Activities. NIPS 2010
- C. Schult, I. Laptev, B. Caputo. Recognizing Human Actions: A Local SVM Approach. ICPR, 2004