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Abstract

We describe how to learn a compact and efficient model
of the surface deformation of human hands. The model is
built from a set of noisy depth images of a diverse set of
subjects performing different poses with their hands. We
represent the observed surface using Loop subdivision of a
control mesh that is deformed by our learned parametric
shape and pose model. The model simultaneously accounts
for variation in subject-specific shape and subject-agnostic
pose. Specifically, hand shape is parameterized as a linear
combination of a mean mesh in a neutral pose with a small
number of offset vectors. This mesh is then articulated using
standard linear blend skinning (LBS) to generate the con-
trol mesh of a subdivision surface. We define an energy that
encourages each depth pixel to be explained by our model,
and the use of a smooth subdivision surface allows us to op-
timize for all parameters jointly from a rough initialization.
The efficacy of our method is demonstrated using both syn-
thetic and real data, where it is shown that hand shape vari-
ation can be represented using only a small number of basis
components. We compare with other approaches including
PCA and show a substantial improvement in the representa-
tional power of our model, while maintaining the efficiency
of a linear shape basis.

1. Introduction
Morphable models of the human body have been a great

success story of computer vision and graphics. Starting
from the face models of Blanz and Vetter [7], and pro-
ceeding to combined shape and pose models of the full
body [5, 13, 15, 12], such models are now starting to see
commercial deployment for applications including virtual
shopping (e.g. Metail), performance capture (e.g. faceshift),
and video gaming (e.g. Kinect Sports Rivals).

However, to our knowledge, no morphable model of the
human hand has yet been constructed. The hand is in some
senses ideal for such modeling: it is normally unclothed,
and has huge potential for natural 3D user interfaces. Ballan
et al. [6] demonstrate that extremely robust hand tracking is
possible given a user-specialized hand model, but acquir-
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Figure 1. Our deformable surface model takes into account both
pose (via an animation-ready kinematic model) and shape (in a
shape space learned to best compose with the kinematic model).
A set of shape parameters β ∈ RK in shape space (left) specifies
(upper center) a neutral mesh V (β) ∈ R3×M and skeleton param-
eters L(β) ∈ R3×B . A set of joint angles θ deforms the mesh to
obtain a specific posed mesh P(θ;V (β), L(β)) ∈ R3×M (bottom
left) using the linear blend skinning function P(·). A subdivision
surface function S(·) maps these meshes to smooth 3D surfaces
(right column). Simultaneously optimizing the parameters on the
full pipeline from joint angles to 3D shape gives the parameters
that best relate the end-to-end model to sparse and noisy real data.

ing the model requires manual rigging and a multi-camera
capture setup. Taylor et al. [28] demonstrate acquisition of
a user-specialized model from a single depth camera, but
require long calibration sequences in which all degrees of
freedom of the hand have to be exercised.

Our hypothesis is that the absence of a morphable model
for hands is because existing techniques for model construc-
tion depend on large datasets of high quality scans. Even
though the number of degrees of freedom of the hand is
similar to that of the body, hands tend to exhibit consid-
erably more self-occlusion, and so such scans have more
holes. Further, hands are smaller, so images of hands typi-
cally contain fewer foreground pixels and camera noise will
have a larger effect. Finally, the space of hand poses may be
larger, despite the number of joints being about the same, so
that more captures would be required to allow one to accu-
rately learn the pose space.

In this paper, we overcome these challenges and build a
morphable model of hands from a set of short ‘sequences’
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(we use a diversely-posed set of 15 frames from each sub-
ject) obtained from fifty different people using a single
Kinect V2 sensor. The keys to our approach are twofold.

First, we learn only those aspects of pose and shape that
are not explained by a standard rigged model. This re-
duces the data requirements, but also has the advantage that
the output of our system is a standard subdivision surface
model driven by a linear blend skinning. This ensures our
approach can be evaluated extremely efficiently. In con-
trast, models such as SCAPE [5] and TenBo [10] involve an
additional linear solve at test time, which, while readily im-
plementable on GPUs, does represent significant additional
computational cost.

Second, we fit the model jointly to all partial scans,
rather than attempting to separately build complete scans
per subject and performing principal component analysis
(PCA). As we show in experiments on synthetic and real
data, this yields a better model even for unoccluded syn-
thetic data, and a much better model with real scans that
contain missing and noisy data.

Our main contribution is thus a new technique for learn-
ing efficient skeleton-driven morphable models from sparse
and noisy depth data. The learned models include a param-
eterized set of basis meshes as well as a parametrization
of skeleton parameters such as bone lengths and skinning
weights. While previous work has learned some of these
parameters, this paper is the first that learns all parameters
jointly, and the first to learn by direct explanation of the
captured data.

1.1. Related Work

Learning a lower dimensional parametrization of shape
from examples of range scans or other 3D data has proved
effective in creating generic morphable models for human
bodies and faces [7, 4, 5, 13, 10, 29, 17, 27, 30, 16, 31, 19].
Having built such morphable models, impressive applica-
tions e.g. for fitting body shape to monocular depth se-
quences or more precise body or face tracking have been
demonstrated [7, 11, 14, 21].

However, despite a long history of successes for faces
and bodies, we are not aware of any existing statistical shape
models for hands. This suggests that this is a challenging
problem, where existing techniques for whole bodies [4, 5,
13, 10] do not directly transfer.

Similar to our work, Allen et al. [3] represent the model
as an adaptation of a standard subdivision surface model
with linear blend skinning. Crucially, however, their adap-
tations are displacement maps on top of a base surface. The
displacements must be limited in magnitude to avoid self-
intersections, and their shape basis is forced to coincide
with the input scans. Also, their optimization steps are se-
quential (block coordinate descent) rather than simultane-
ous, which may result in a poor local optimum being ob-

tained. Cashman and Fitzgibbon [9] demonstrate that mor-
phable models using subdivision surfaces can be learned
from extremely limited data (30 silhouette images). How-
ever their approach does not separate shape and pose, and
neither learns a parametric shape basis.

Specific to hands, Rhee et al. [20] extract creases visi-
ble from a single frontal image of a hand under controlled
illumination, localize joints, and fit a 3D model with user-
specific skinning. This model is fit on a single image, re-
sulting in very simplistic hand models with limited degrees
of freedom. Albrecht et al. [2] go to the other extreme cre-
ating very detailed, physically-realistic hand models. How-
ever, the process is laborious requiring plaster casting of hu-
man hands, performing laser scans, and manually creating
a physics-enabled hand model.

A more automatic technique is presented by Taylor et
al. [28], which generates personalized hand models given
noisy input depth sequences where the user’s hand rotates
180◦ whilst articulating fingers. A continuous optimization
that jointly solves for correspondences and model param-
eters across a smooth subdivision surface with as rigid as
possible (ARAP) regularization leads to high-quality user-
specific rigged hand models, though not a shape basis.
Whilst the process is automatic, the hands are required to
cover the full range of articulations, and longer sequences
are required, leading to more complex capture requirements
and more costly optimization.

While not explicitly explored in this paper, we hypoth-
esize that hand shape will prove an important prior for ro-
bust hand pose estimation, much in the way that it has been
shown for whole body tracking [14]. Studies of the anatom-
ical structure of adult hands has shown considerable varia-
tion [8], which is clearly apparent across gender and age.
Recent work on high-quality, offline, performance capture
of hands, using multi-camera rigs, reaffirms our intuition re-
garding the importance of user-specific hand shape for pose
estimation. Ballan et al. [6] construct a personalized hand
mesh using a multiview camera rig and Poisson surface re-
construction, which is then manually skinned. They demon-
strate high-quality results with complex two-handed and
hand-object interactions, closely fitting the detailed mesh
model to the data. However, this system focuses on pose
estimation as opposed to the shape construction, which is
performed in an time consuming manual manner.

2. Model
We now describe our deformable hand surface model.

We will use triangular meshes extensively as a fundamental
primitive. All meshes discussed in this paper represent a hu-
man right hand (although there is nothing otherwise hand-
specific about our model), and will contain exactly M ver-
tices and use a fixed triangulation. We thus represent such
a mesh as a matrix V ∈ R3×M where the mth column con-



tains the location of the mth vertex.
As explained in more detail below, we also employ a

hand skeletal structure comprising B bones and use a ma-
trix L ∈ R3×B to represent the locations of these bones.
Once again, the bth column represents the location of bone
b. These bones are arranged in a fixed hierarchy with bone
b = 1 being the root bone and the πb denoting the index of
the parent for any other bone b ∈ {2, ..., B}

As illustrated in Figure 1, our shape model linearly pa-
rameterizes the shape of a hand mesh V (β) and skeleton
L(β) in a neutral pose using a set of shape parameters β ∈
RK . Our pose model accounts for articulation out of the
neutral pose by mapping a neutral hand mesh and skeleton
to a posed hand mesh P(θ;V (β), L(β)) ∈ R3×M . Finally,
our surface model uses loop subdivision to map this posed
‘control mesh’ to a smooth surface S(P(θ;V (β), L(β)) ⊂
R3. In the remainder of this section, we detail the exact
form of these functions.

2.1. Shape Model

Our shape model follows our intuition that the variation
in the shape of a human hand (and skeleton) in a single pose
is relatively compact and can be described by a low dimen-
sional linear subspace. We therefore parameterize this space
using a set of basis mesh matrices V = {Vk}Kk=1 ⊂ R3×M

and basis bone location matrices L = {Lk}Kk=1 ⊂ R3×B . It
is not coincidence that we use the same number of dimen-
sions K for both bases, as we enforce that skeletal and skin
shape vary together. In particular, given a vector of shape
parameters β ∈ RK , a neutral mesh

V (β;V) =

K∑
k=1

βkVk (1)

and a neutral skeleton

L(β;L) =

K∑
k=1

βkLk (2)

is recovered as a linear combination of these basis matrices.
Further, we believe that it is intuitive to have the first

basis component V1 and L1 represent a ‘mean’ mesh and
skeleton with the other basis components representing small
offsets. Ideally then, β1 should (approximately) encode
scale, and the other coordinates in β should encode how
much of the offset vectors to use. We do not explicitly
enforce these desires, but instead employ regularizers (see
Sections 3.1.2 and 3.1.3) to encourage this.

Our linear model has the same representational power as
PCA, though differs substantially in how it is learned (see
below). Compared to models such as [5], our approach is
potentially considerably more efficient in both memory and
compute.

2.2. Pose Model

A key feature of our model, is that we don’t require the
aforementioned linear shape model to account for any hand
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Figure 2. Our template hand model contains a mesh and kinematic
skeleton. This defines the mesh topology and skeletal structure
of our learned model, and provides a weak regularization on the
shape model during optimization. As such the template does not
need to be anatomically accurate: the learned model will adjust
both the vertices and the skeleton to ensure a precise reconstruc-
tion of the observed hand surface. On the right, we have labeled
the number of degrees of freedom each joint has.

surface deformation resulting from non-neutral poses. In-
stead, we explicitly parameterize pose using a vector θ con-
catenating a set of joint angles (see Figure 2), global ori-
entation and translation. Our pose model, defined in this
section, specifies the articulated deformation that θ invokes
on a mesh V (β) in a neutral pose using the corresponding
skeleton L(β). Although many formulations are possible,
we use linear blend skinning (LBS) as it is both common
place and extremely efficient.

For clarity, we momentarily drop the dependence on
shape parameters β and demonstrate how LBS deforms
a fixed mesh V =

[
v1 ... vm

]
and skeleton L =[

l1 ... lb
]
. This model requires that each bone b is fur-

ther endowed with a fixed rotation matrix Qb which indi-
cates the principal axes of rotation of the bone’s joint. To-
gether with the bone location lb, this defines a coordinate
system

Hb =

[
Qb lb
0 1

]
∈ R4×4 (3)

that maps from bone space to world space via a rigid trans-
form. Note also that the set H = {Hb}Bb=1 implicitly de-
fines an equivalent set of transformations {Tb}Bb=1, where
Tb maps from bone b’s coordinate system to its parent πb’s,
and where Hb = T1...Tπb

Tb.
Given a set of pose parameters θ, linear blend skinning

articulates a joint by applying a 3D rotation R̃b, in the form
of a homogeneous rotation matrix

Rb(θ) =

[
R̃b(θ) 0

0 1

]
∈ R4×4 , (4)

to each bone b’s local coordinate system. In addition, global
orientation and position is accounted for by a global rigid
transformation R(θ) ∈ R4×4 that is applied to the world.
For each bone b, we thus obtain a rigid transformation



Gb(θ) relating bone b’s local coordinate system to the world
under pose θ via the following recurrence:

G1(θ) = R(θ)T1R1(θ) (5)
Gb(θ) = Gπb

(θ)TbRb(θ) . (6)

The mesh itself is ‘skinned’ to the bones by a set of skin-
ning weights Γ = {αbm : b ∈ {1, ..., B},m ∈ {1, ...,M},
where

∑B
b=1 αbm = 1 for all m. Intuitively, αbm indicates

the strength of attachment of vertex m to bone b when the
latter moves. More precisely, the articulated position under
pose θ of the mth vertex in V is

I3×4R(θ)

B∑
b=1

αbmGb(θ)H
−1
b v̂m (7)

where I3×4 projects to Euclidean coordinates and v̂m =[
v>m 1

]>
. Note that H−1

b first maps the vertex vm from
world coordinates in the neutral pose to the local coordinate
system of bone b. The transformation Gb(θ) then maps the
vertex back to world coordinates under pose θ.

For notational convenience, we now create the triple
Υ = (V,L,Γ) of pose-invariant shape parameters that
we have so far introduced.1 Reintroducing the shape pa-
rameters β, the parameters required by the LBS model
are Φ(β; Υ) = (V (β), L(β),Γ) and we thus write
P(θ; Φ(β; Υ)) ∈ R3×M to indicate the resultant mesh by
applying pose θ to the neutral hand mesh of shape β.

2.3. Surface Model

Following [28], we represent the actual surface of our
model using Loop subdivision of a control mesh [18].
Given a mesh V , the Loop subdivision procedure works by
iteratively subdividing each triangle face (from the fixed tri-
angulation) and smoothing the vertex positions with their
neighbors. The ‘limit surface’ S(V ) ⊂ R3 would be ob-
tained by performing this subdivision procedure an infinite
number of times.

In order to avoid this complicated construction, we fol-
low [28] by instead parameterizing our surface using

S(u;V ) : Ω× R3×M 7→ R3 , (8)

which maps from a location u, in an essentially 2D space
Ω of surface coordinates, to a point on the 3D subdivision
surface. With this definition, the full surface can be writ-
ten S(V ) = {S(u;V ) : u ∈ Ω}. Due to space limi-
tations, we refer the reader [28] for the precise details of
function S(·) and the parameterization of u. However, it
suffices for our purposes that S(·) and its derivatives with
respect to u and V can be efficiently computed. We com-
pose S(·) with the rest of our model allowing us to produce
S(u;P(θ; Φ(β; Υ)), the 3D location of the coordinate u on
the hand with shape β and pose θ.

1We exclude the parameters {Qb}Bb=1, which are held fixed.

2.4. Full Model

To summarize, when a particular set of shape param-
eters β is chosen, we obtain the subject specific parame-
ters Φ(β; Υ) of a LBS hand model. We can then obtain a
mesh with shape β in pose θ as P(θ; Φ(β; Υ)). Finally we
can obtain the position of a coordinate u ∈ Ω on the sur-
face of the subdivision surface in pose θ with shape β as
S(u;P(θ; Φ(β; Υ))). Our desire then, is to learn a setting
of Υ so that β and θ alone can be used to describe the ma-
jority of feasible human hand shapes and poses.

3. Fitting the Model
A major contribution of this work is showing how to

learn the parameters Υ from a set of noisy depth images
of users’ hands. To this end, we assume that we have a
diverse set (i.e. men, women, and children, with varying
hand shapes) of S different subjects. For each subject s,
we have Fs depth frames of the user performing various
hand articulations. In each frame f , a set ofNsf data points
{xsfn}

Nsf

n=1 ⊂ R3 with corresponding estimated normals
{nsfn}

Nsf

n=1 ⊂ R3 is extracted.

3.1. Energy

We want to use this data to learn Υ such that our model
can both explain the data and satisfy some straightforward
priors. We cast this as the problem of minimizing the energy

E(Υ) =

S∑
s=1

Es(Υ) + λarapEarap(Υ) + λskinEskin(Υ) (9)

defined over the variables in Υ. The latter two weighted
prior terms regularize the basis representation and skinning
weights, and are described below. Each subject specific
term

Es(Υ) = min
β

Fs∑
f=1

Esf (β; Υ) + λshapeEshape(β) (10)

provides constraints on Υ based on the data from subject
s. The second term in (10) encodes a shape prior penalty,
while each term

Esf (β; Υ) = min
θ

Nsf∑
n=1

Esfndata (θ, β; Υ) + λposeEpose(θ) ,

measures how well the posed surface is at explaining the
data in frame f .

3.1.1 Data term

The data term that we use is

Esfndata (θ, β;Υ) = (11)
min
u∈Ω

ρ(‖WQsfn(xsfn − S(u;P(θ; Φ(β,Υ))))‖)

+λnormal ρ
⊥(‖1− (nsfn)>S⊥(u;P(θ; Φ(β,Υ)))‖)



where ρ(e) and ρ⊥(e) correspond to robust kernels applied
to the point position error and the squared normal error re-
spectively. We set the scaling matrix W = diag(1, 1, ζ)
which, combined with the rotation Qsfn that rotates the 3D
residual so that the line of sight to xsfn aligns with the z-
axis, models the depth sensor’s relatively high uncertainty
in the viewing direction.

3.1.2 As-Rigid-As-Possible Regularization

The term Earap(Υ) invokes the ‘As-Rigid-As-Possible’
(ARAP) [24] deformation assumption to regularize V and
L. We use ARAP to define the regularization energy as

Earap(Υ) = D(V1, Vtemplate) +D†(L1, V1, Ltemplate, Vtemplate)

+

K∑
k=2

(
D(Vk,∅∅∅) +D†(Lk, Vk,∅∅∅,∅∅∅)

)
(12)

where Vtemplate and Ltemplate are the mesh and bone locations
from our coarse template hand model (Figure 2), and ∅∅∅ is
a matrix of an appropriate size filled with zeros. The terms
in (12) taking only two arguments are the standard ARAP
measure of deformation D(V, V ′) between two meshes V
and V ′ with vertex positions {vm}Mm=1 and {v′m}Mm=1 in
R3×M is defined as

M∑
m=1

min
R∈SO(3)

∑
n∈N (m)

‖(vn−vm)−R(v′n−v′m)‖2 , (13)

where N (m) is the set of vertices neighboring vertex m.
Under ARAP, rigid transformations are not penalized,

and smaller (localized) non-rigid transformations are penal-
ized less than larger non-rigid transformations. Note that

D(V,∅∅∅) =

M∑
m=1

∑
n∈N (m)

‖(vn − vm)‖2 , (14)

which simply encourages neighboring vertices to coincide.
In our case, for k ≥ 2, Vk is meant to represent offsets from
the ‘mean’ mesh V1, and thus this translates into our desire
that the vertex offset field be smooth.

The terms in (12) that take four arguments employ a
modified version of ARAP that encourages the bone loca-
tions in the core meshes to remain consistent relative to a set
of nearby vertices (typically a vertex ring). We denote the
set of vertex indices as Cb ⊂ {1, . . . ,M} for each bone
b. For a pair of bone location matrices L,L′ ∈ R3×B

with columns {lb}Bb=1, {l′b}Bb=1 and mesh vertex matrices
V, V ′ ∈ R3×M with columns {vm}Mm=1 and {v′m}Mm=1,
D(L, V, L′, V ′) is defined as

B∑
b=1

min
R∈SO(3)

∑
m∈Cb

‖(vm − lb)−R(v′m − l′b)‖2 . (15)

Similarly, we note that

D†(Lk, Vk,∅∅∅,∅∅∅) =

B∑
b=1

∑
m∈Cb

‖(vm − lb)‖2 , (16)

which for basis components k ≥ 2 equivalently encourages
the offsets of a bone to be similar to the offsets of the ver-
tices this bone is anchored to.

3.1.3 Shape Prior

We regularize the shape parameters β using the term

Eshape(β) = (1− β1)2 +

K∑
k=2

β2
k (17)

which encourages the user-specific hand model to stay rel-
atively similar to the template model with minor vertex and
bone location offsets applied.

3.1.4 Pose Prior

We highly penalize any pose deformations that violate hu-
man physical constraints by adding barrier constraints on
the pose θ using the term

Epose(θ) =
∑
i


(θi − θmin

i )4 if θi < θmin
i

(θmax
i − θi)4 if θi > θmax

i

0 otherwise
(18)

where θmin and θmax are approximations of the minimum
and maximum rotation angles for the joints of the hand.

3.1.5 Skinning Weight Prior

To ensure that the skinning weights for each vertex m sum
to 1, we find that it is sufficient to add another energy
Eskin(Υ) =

∑M
m=1 ‖

∑B
b=1 αbm − 1‖2 penalizing devia-

tions by the large weight λskin in (9). In order to ensure
that the skinning weights remain non-negative, we simply
parameterize the weight of vertex m with bone b in the log
domain as α̃bm = log(αbm).

4. Optimization
In order to optimize the energy function of your model,

we ‘lift’ it to a simpler energy, defined by introducing a set
of latent variables, that can be optimized using a standard
non-linear optimizer.

4.1. Lifted Energy

As defined above, our energy E(Υ) is of a complicated
form that contains many summations over minimizations.
Following [28], we note that the following is true of two
real valued functions f(x) and g(x)

min
x
f(x) + min

x
g(x) = (min

x1

f(x1) + min
x2

g(x2))

= min
x1,x2

(f(x1) + f(x2)) ≤ f(x1) + f(x2) (19)



for any x1 and x2. That is, the variables being minimized
over in a sum can be labeled and passed through the sum.
Our energy can also be ‘lifted’ in this manner by introducing
a set of shape parameters B = {βs}Ss=1, poses Θ = {θsf :
s ∈ {1, ..., S}, f ∈ {1, ..., Fs}}, correspondences U =
{usfn : s ∈ {1, ..., s}, f ∈ {1, ..., Fs}, n ∈ {1, ..., Nsf}}
and ARAP rotations2 R = {Rm}Mm=1 ∪ {R

†
b}Bb=1. This

introduces a new energy E′(Υ,B,Θ,U ,R) such that

E(Υ) = min
B,Θ,U,R

E′(Υ,B,Θ,U ,R) ≤ E′(Υ,B,Θ,U ,R)

(20)
for any setting of B,Θ,U ,R. We include the full form of
this lifted energy in the supplementary material, but imagine
here for simplicity a case in which λarap = λskin = λshape =
λpose = 0 and that our data term is simply

Esfndata (θ, β,Υ) = min
u∈Ω
‖xsfn − S(u;P(θ; Φ(β,Υ)))‖2 .

(21)
Then the lifted energy would be

E′(Υ,B,Θ,U ,R) =

S∑
s=1

Fs∑
f=1

Nsf∑
n=1

E′sfndata (usfn, θsf , βs; Υ)

(22)
with a lifted data term

E′sfndata (u, θ, β,Υ) = ‖xsfn − S(u;P(θ; Φ(β,Υ)))‖2 .
(23)

This lifted data term removes the ‘inner minimization’ over
u ∈ Ω.

4.2. Non-Linear Optimization

We use Levenberg-Marquardt to optimize this energy,
and exploit the Ceres solver [1] to automatically deal with
the large, but dynamic, sparsity in the problem. Our opti-
mization schedule (see below) will make use of a subroutine
NONLINEAR(N , F) that attempts to take N Levenberg-
Marquardt steps optimizing all parameters except for those
in F ⊂ {Υ,B,Θ,U ,R}, an operation supported by Ceres.

4.3. Discrete Update

To help jump out of local minima, we also make use of
a subroutine DISCRETEUPDATE() that attempts to improve
the correspondences U by searching over a discrete set of
candidates. Specifically, we consider a proposed set of sam-
ples Uprop = U ∪ Usamp ⊆ Ω where Usamp is a fixed set
of surface coordinates, sampled roughly uniformly over the
domain Ω. We then consider performing a loop over subject
s, frame f and data point n to find a new surface coordinate

u′sfn = arg min
u∈Uprop

E′sfndata (u, θsf , β
s,Υ) . (24)

The resulting set U ′ = {u′sfn} is guaranteed to not increase
the energy (i.e. E′(Υ,B,Θ,U ′,R) ≤ E′(Υ,B,Θ,U ,R)).

2The rotations in the ARAP regularizers fall out for any terms involving
basis components k ≥ 2, and thus need not be parameterized.

4.4. Initialization
We manually initialize the poses Θ so that the template

roughly aligns with the point clouds. Although one could
consider automated methods, the task was not overly oner-
ous and needs only to be performed once. Similarly, each
βs ∈ B is initialized so that βs1 corresponds to the rough
scale of subject s and βsk = 0 for all k ≥ 2. We initialize
V1 and L1 using our rough hand template (see Section 5),
and initialize the other basis components using zero mean
noise. All ARAP rotations in R are initialized to the iden-
tity and U with a call to DISCRETEUPDATE().

4.5. Optimization Schedule
After initialization, we then perform a scheduled opti-

mization (see Algorithm 1) that interleaves discrete updates
with continuous optimization, while gradually unfreezing
parameters. We found that ordering the various ‘stages’ in
this way made the algorithm quite robust in finding a good
minimum, and as such, the exact timing of the switches
from stage to stage mattered little.

Algorithm 1 Optimization Schedule
SUBOPTIMIZE(4, B ∪ Γ)
SWITCHTOGM() . Switch to Geman McClure

robust error function
SUBOPTIMIZE(4, B ∪ Γ)
SUBOPTIMIZE(4, Γ)
SUBOPTIMIZE(4, ∅)
function SUBOPTIMIZE(N , F)

for i=1:N do
NonLinear(25, F)
DiscreteUpdate()

5. Evaluation
We now describe the setting and the various experiments

performed to evaluate our approach.

Hand template. We rigged the template hand model by
hand, using the 3D modeling software Blender. The tem-
plate mesh comprises 452 vertices, and the skeleton con-
tains 21 bones. See Figure 2.

Parameter settings. The robust kernels for the data terms
ρ(e) and ρ⊥(e) are initially set to the Cauchy kernel
ρ(e;σ) = σ2 log(1 + e2/σ2) which is moderately robust
to outliers. We then switch to the extremely robust Geman-
McClure kernel ρ(e, σ) = e2/(e2 + σ2) to avoid fitting to
most outliers in the data once the parameters are reasonably
close to a good solution. See Algorithm 1.

5.1. Datasets

To evaluate and compare our method, we use three
datasets: (i) SYNTHETIC3D, a synthetic dataset containing
3D data point clouds covering the hand surface; (ii) SYN-
THETIC2.5D, a synthetic dataset of depth images; and (iii)
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Figure 3. RMSE (left) and MAE (right) for the baseline (blue) and
our model (red) with K basis components.

REAL, a real dataset of depth images extracted from the
Kinect V2 sensor.

SYNTHETIC3D is generated using the popular modeling
tool Poser [23]. The rigged hand model in Poser supports
more than 100 blend shapes that can be used to generate
a large variety of different and realistic hands. We thus
randomly sampled weights for 50 distinctly shaped hands
with 15 different poses each. In this dataset, all 3D ver-
tices are used, even if some of them would be occluded in
a real depth camera. SYNTHETIC2.5D, on the other hand,
is generated by projecting the 3D data of SYNTHETIC3D
using a virtual depth camera at a fixed location, remov-
ing any points not directly visible to the camera. Both
SYNTHETIC3D and SYNTHETIC2.5D are noise-free data,
which allows us to test the expressiveness of the model
without worrying too much about getting stuck in local min-
ima. We also investigate adding artificial noise to test its
effect on the fitting process.

REAL was acquired using a Kinect V2 time of flight sen-
sor. We recorded a diverse set of 50 different subjects: 17
women, 31 men, and 2 children, where each subject was
asked to perform varied hand articulations in front of the
depth camera. We selected 15 diverse hand poses for each
subject on average. Unlike the synthetic datasets, REAL
contains a very considerable amount of noise and outlier
pixels due to depth discontinuities (‘flying pixels’) and mul-
tipath interference (see Figure 5).

5.2. Baseline

We compare against a baseline approach based on the
‘personalization’ procedure detailed in [28]. By separately
applying personalization to S subjects, one can obtain a
set of personalized meshes {V s}Ss=1, skeletons {Ls}Ss=1

and scales {βs0}Ss=1. For subject s, we can concatenate

and flatten these matrices and remove the scale as ps =
1
βs
0

(
~V s> ~Ls>

)>
. By applying PCA to the vectors {ps}Ss=1,

we obtain a mean vector p̄ and a set of principle directions
{pk}. In particular, each of the input meshes p, has a corre-
sponding vector αs, such that

ps = p̄+
∑
k

αskpk . (25)

Note that if we truncate atK PCA directions this minimizes

min
{ps}Ss=1

‖min
α

(
p̄+

K∑
k=1

αkpk − ps
)
‖2 . (26)

In contrast, our model minimizes the 3D error between the
observed points and the model surface, through the subdivi-
sion surface, the skinning, and the linear shape basis.

5.3. Results

Across all datasets we used 30 subjects for training
(learning the shape basis parameters Υ jointly with per-
subject shape coefficients βs and per-frame poses θsf ) and
20 for testing (optimizing for the βs and θsf parameters
while keeping Υ fixed). All the reported quantitative and
qualitative results, including the plots, are on this held-out
test set.

Quantitatively, we calculate the 3D residuals between
each data point in the test set and the surface and summarize
these values using the root mean squared error (RMSE) and
the mean absolute error (MAE). Since both SYNTHETIC3D
and SYNTHETIC2.5D lack any noise, RMSE is a reason-
able metric. However, for REAL MAE is significantly more
robust to outliers in the data. Error values are reported in
millimeters (mm).

In Figure 3 we report the RMS and MAE errors on the
three datasets, showing the effect of the number of basis
components. For the PCA baseline we fix K so as to ex-
plain at least 90% of the variance in the training meshes.
This resulted in K = 4 for REAL and SYNTHETIC2.5D
and K = 5 for SYNTHETIC3D, including the mean vec-
tor. Our model clearly outperforms the baseline even with
K = 1. Additional basis components lower the error rate,
but the accuracy appears to saturate beyond K = 3.

In Figure 4 we report the percentage of points with a
squared error under a given threshold at convergence. Simi-
larly, we outperform the baseline even with K = 1, despite
the baseline using 4 or 5 basis components. Our accuracy
improves with additional basis components but saturates be-
yond about K = 2.

We illustrate some qualitative fitting results on the REAL
dataset in Figure 5. This also shows the diversity of hand
shapes and poses our model can handle, as well as some of
the outliers that it is robust to. Figure 6 shows the shape co-
efficients for all the subjects on the REAL dataset projected
onto their first two principal components.3 Figure 7 visual-

3NB this PCA over the βs vectors is purely for visualization purposes
and has nothing to do with the baseline.
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Figure 5. Our surface (red) model fit to data from several frames.
Each data point xsfn ∈ R3 (green) has an associated surface point
S(usfn; ...) (blue). The ‘outlier’ examples show robust fitting in
the presence of considerable noise.
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Figure 6. The set of shape coefficients {βs}Ss=1, learned when our
model is fit to the entire REAL dataset, projected onto the first two
principal directions. The size of each point encodes the scale co-
efficient (i.e. β1). One can see that children (orange) have smaller
hands while male subjects (blue) typically have larger hands.

izes the first two offset basis components (k = 2, 3) through
the magnitudes of the vertex offsets. The basis component
on the left has a larger effect on the index finger and wrist,
while the basis component on the right affects the fingers

Basis Component 𝑘 = 2 Basis Component 𝑘 = 3

Figure 7. For the first two offset basis components learned on the
REAL dataset, we color the surface by vertex offset magnitude.
Green and red indicates small large offsets respectively.

farthest from the thumb, widening the entire hand.
Finally, we performed controlled noise experiments (see

Figure 4) using the synthetic datasets SYNTHETIC3D and
SYNTHETIC2.5D. We used a fixed number of basis com-
ponents K = 4, but varied the standard deviation of the
3D Gaussian noise we added. Noise was added only to the
‘training’ data in this experiment, to show how robust our
optimization scheme is.

6. Discussion
We have shown how a skeleton-driven morphable model

can be learned from sparse and noisy data, and considerably
outperform a baseline approach. Our model is very efficient
at test time, being linear in the number of basis components
and requiring only a few components to accurately describe
a wide variety of human hands. Once the shape parameters
β are inferred for a given user, the shape model could be
‘baked in’ and the control mesh subdivided a finite number
of times to produce a standard LBS mesh model. This could
then be used in a real time hand tracker that utilizes a de-
tailed LBS model [22], as it is increasingly common to use
a personalized shape model for hand tracking [25, 26].

As future work, it would then be natural to ‘personalize’
a hand model interactively and in real time by fitting the
shape parameters β during hand tracking. Also, we would
like to investigate efficient options for explicitly encoding
the dependence of shape on pose. The current models are
at a fairly coarse resolution, but it would be interesting to
see if such a method could yield a super-resolved model.
Finally, we hope to apply our technique to other classes such
as human body or animals.
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