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Fig. 1. Our high speed sensor can be exploited for efficient, low latency, and high quality computer vision algorithms. As illustrated, our system allows

unprecedented robustness to tracking and frame-to-frame correspondence tasks, where commercially available depth cameras would typically fail.

The advent of consumer depth cameras has incited the development of a

new cohort of algorithms tackling challenging computer vision problems.

The primary reason is that depth provides direct geometric information that

is largely invariant to texture and illumination. As such, substantial progress

has been made in human and object pose estimation, 3D reconstruction and

simultaneous localization and mapping. Most of these algorithms naturally

benefit from the ability to accurately track the pose of an object or scene of

interest from one frame to the next. However, commercially available depth

sensors (typically running at 30fps) can allow for large inter-frame motions

to occur that make such tracking problematic. A high frame rate depth

camera would thus greatly ameliorate these issues, and further increase

the tractability of these computer vision problems. Nonetheless, the depth

accuracy of recent systems for high-speed depth estimation [Fanello et al.

2017b] can degrade at high frame rates. This is because the active illumination

employed produces a low SNR and thus a high exposure time is required to

obtain a dense accurate depth image. Furthermore in the presence of rapid

∗Authors equally contributed to this work.
†Authors equally contributed to this work.
This work was conducted at perceptiveIO.

Authors’ address: Adarsh Kowdle; Christoph Rhemann; Sean Fanello; Andrea Tagliasac-
chi; Jonathan Taylor; Philip Davidson; Mingsong Dou; Kaiwen Guo; Cem Keskin; Sameh
Khamis; David Kim; Danhang Tang; Vladimir Tankovich; Julien Valentin; Shahram
Izadi Google Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).
0730-0301/2018/11-ART220
https://doi.org/10.1145/3272127.3275062

motion, longer exposure times produce artifacts due to motion blur, and

necessitates a lower frame rate that introduces large inter-frame motion

that often yield tracking failures. In contrast, this paper proposes a novel

combination of hardware and software components that avoids the need

to compromise between a dense accurate depth map and a high frame rate.

We document the creation of a full 3D capture system for high speed and

quality depth estimation, and demonstrate its advantages in a variety of

tracking and reconstruction tasks. We extend the state of the art active stereo

algorithm presented in Fanello et al. [2017b] by adding a space-time feature

in the matching phase. We also propose a machine learning based depth

refinement step that is an order of magnitude faster than traditional post-

processing methods. We quantitatively and qualitatively demonstrate the

benefits of the proposed algorithms in the acquisition of geometry in motion.

Our pipeline executes in 1.1ms leveraging modern GPUs and off-the-shelf

cameras and illumination components. We show how the sensor can be

employed in many different applications, from [non-]rigid reconstructions

to hand/face tracking. Further, we show many advantages over existing state

of the art depth camera technologies beyond framerate, including latency,

motion artifacts, multi-path errors, and multi-sensor interference.
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1 INTRODUCTION

Computer vision tracking problems span a wide range of applica-

tions, from tracking simple parametric models [Nakabo et al. 2000;

Stuhmer et al. 2015] to more complex non-rigid shapes such as hu-

man bodies [Dou et al. 2017]. However, when the tracking problem

involves many degrees of freedom (e.g. non-rigid reconstruction of

body parts [Dou et al. 2017, 2016; Zollhöfer et al. 2014]) depth sensors

offer crucial advantages over RGB cameras or IMUs. In particular,

depth images provide richer geometric data while simultaneously

achieving invariance to surface texture and lighting conditions. The

importance of high framerate (fps) for tracking was demonstrated

by the research community (see e.g. [Handa et al. 2012; Kim et al.

2016; Nakabo et al. 2000; Stuhmer et al. 2015]), as well as by the

widespread adoption of higher speed RGB cameras and/or inertial

measurement units (IMUs) in commercial 3D rigid pose estimation

and tracking systems for VR/AR (e.g. Oculus, HTC Vive, Microsoft

HoloLens, and Google Tango). High framerate cameras are also used

in commercial MOCAP systems (e.g. OptiTrack or VICON) for the

tracking of a sparse set of optical markers at framerates higher than

1kHz. In our work, we desire to bridge the gap between MOCAP

systems and depth sensors towards enabling the tracking of dense

geometry in fast motion.

Depth revolution. The recent availability of low-cost commodity

3D capture systems such as the Microsoft Kinect has revolutionized

our ability to tackle challenging computer vision and human com-

puter interaction problems such as body part classification [Shot-

ton et al. 2011; Sridhar et al. 2015], hand pose estimation [Keskin

et al. 2012; Taylor et al. 2016; Tkach et al. 2016], action recognition

[Fanello et al. 2013a,b], 3D scanning [Innmann et al. 2016; Izadi et al.

2011] and 3D scene understanding [Bleyer et al. 2012; Li et al. 2015;

Valentin et al. 2015]. Depth sensors are also widely used in robotics

[Ciliberto et al. 2012; Fanello et al. 2014; Gori et al. 2013] as well as

in virtual and augmented reality [Orts-Escolano et al. 2016]. Despite

their widespread use, depth sensors typically operate at 30fps – a

framerate optimized for color cameras in the motion picture indus-

try. However, this low framerate poses considerable challenges to

computer vision applications because significant motion can occur

between consecutive temporal frames.

Coping with insufficient framerate. Many computer vision algo-

rithms explicitly assume small frame-to-frame motion (e.g. optical

flow [Horn and Schunck 1981]) or implicitly by assuming that the

initial solution is close to the expected global optimum and can

be found by gradient based local optimization (e.g. ICP [Chen and

Medioni 1992]). When the small motion assumption is violated sub-

optimal solutions are produced. As a result, recent methods design

complex and compute-intensive pipelines in order to cope with high

frame-to-frame variations. For instance, recent parametric models

for non-rigid tracking [Taylor et al. 2016], use sophisticated reini-

tialization strategies to avoid getting stuck in local minima. Other

dynamic reconstruction pipelines [Dou et al. 2016; Orts-Escolano

et al. 2016] rely on fast frame-to-frame semantic correspondences

[Wang et al. 2016], increasing the overall compute. Despite these

efforts, these tracking systems still struggle to cope with the huge

search space as well as motion artifacts and appearance changes

that occur at lower framerate capture.

High-speed capture. Since the displacement of objects in an image

is linearly dependent on their speed and the sampling frequency of

the camera, large frame-to-frame motion problems can be attacked

by reducing the time interval between consecutive frames. Hence,

we note that employing high frame-rate depth cameras make nu-

merous computer vision problems easier to solve. The advent of

high speed RGB sensors and IMUs in mobile phones and consumer

cameras have already paved the way towards robust 3D pose es-

timation; e.g. recently Kiani Galoogahi et al. [2017] acquired high

framerate datasets for 2D object tracking. Very recent work [Fanello

et al. 2017b] has shown a fast 3D capture camera that processes

depth maps in 2.5ms, however the method employs a single-mode

laser coupled with a Diffractive Optical Element (DOE) as active

illumination, similar to the one used in Kinect V1. These active illu-

minators have a very low SNR and therefore they struggle with low

reflectivity areas and large distances. As a consequence, without a

fairly high exposure time of the camera (i.e. 30 ms), the quality of

depth significantly decreases (see Figure 14). However, with such

a high exposure time motion artifacts are more easily introduced.

Thus, in practice, this system cannot produce a high frame rate

depth stream without sacrificing depth quality.

In this paper we address these issues: our 3D capture technology

is based on depth-from-stereo with active structured light infrared

illumination that leverages Vertical Cavity Surface Emitting Laser

(VCSEL) technology [Moench et al. 2016]. This allows for a strong

SNR even in low exposure settings, i.e. 1 − 2ms, enabling very high

framerates without sacrificing depth quality (see Figure 14). As re-

sult, we drastically reduce the difficulty of the non-rigid tracking

problems by leveraging high frame rate depth estimation. The over-

all computational budget required for high-framerate tracking itself

is comparable to tracking at low speeds (due to significantly lower

per frame computation costs), but with the benefit of significantly

more accurate tracking results.

Contributions. We propose a high speed, fast exposure, and low

latency dense capture pipeline for geometry in fast motion that runs

in 1.1ms end-to-end on an Nvidia TitanX. Our contributions are:

• We detail all off-the-shelf hardware components needed to

build a high speed and high quality 3D capture sensor.

• We contribute a hardware solution to effectively eliminate

depth bias inherent in active illumination stereo systems.

• We provide a practical solution to avoid lens flare induced by

the active illumination in multi-sensor setups.

• We extend Fanello et al. [2017a] to leverage temporal co-

herency with a complexity that is independent of patch size.

• We introduce a novel temporal prior to compute disparity.

• We devise a machine learning approach to refine the dispari-

ties by learning to efficiently invalidate outliers.

• We demonstrate the effectiveness of the system in many high-

level tracking applications.

Numerous quantitative and qualitative experiments prove the

effectiveness of the proposed applications for many challenging

capture and tracking scenarios.
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Fig. 2. (left) The screen space displacement (in pixels) between consecutive frames induced by a target object moving 12 m/s with respect to framerate and

distance from the camera. (right) We display consecutive RGB frames captured at different frame-rates and exposures for a subject moving a tennis ball at a

1.5m distance. Our high frame-rate and low exposure camera results in (1) small motions and (2) limited motion blur.

2 RELATED WORK

Solving general tracking problems is one of the most active areas in

computer vision. Generally speaking, tracking applications can be

categorized by the degrees of freedom (DOFs) of the problem. For

instance, in RGB images we may be interested in tracking the 2D

position of a particular object using a known model or a template

[Nakabo et al. 2000], or in a depth image we may want to infer

the 3D position of the object with respect to the camera [Stuhmer

et al. 2015]. Increasing the degrees of freedom also increases the

complexity of the problem, for example in camera localization tasks

the goal is to infer both position and orientation leading to a 6DOF

estimation problem [Forster et al. 2014; Izadi et al. 2011; Newcombe

et al. 2011]. Research has shown that, given a sufficiently high SNR,

high frame rates greatly simplifies tracking problems [Handa 2013;

Newcombe 2012]. For example, commercially available systems such

as VR headsets, successfully solve the camera pose problem with

a combination of higher speed RGB (IR) cameras and extremely

fast IMUs [RoadToVR 2016]. For tracking high-speed rigid motion

without motion blur, high-framerate pan/tilt cameras such as the

one proposed by Okumura et al. [2011] can be employed, but these

do not generalize to the generic tracking scenarios we consider.

Event cameras. Recently, event cameras have also shown very

promising results for localization and tracking problems [Kim et al.

2016; Rebecq et al. 2017; Reinbacher et al. 2017], showing again

the importance of high frame-rates for tracking purposes. How-

ever, when the degrees of freedom of the problem increase, RGB

sensors are not sufficient. For these applications, 3D sensors have

Table 1. Depth sensors commercially available compared with the proposed

solution. Notice how we can achieve the fastest frame rate without sacrific-

ing resolution.

Sensor Max Res @ FPS Min Res @ FPS

Kinect v1 640 × 480@30F PS 640 × 480@30F PS

Kinect v2 512 × 424@30F PS 512 × 424@30F PS

DUO MLX 752 × 480@45F PS 320 × 120@320F PS

ZED 4416 × 1242@15F PS 1344 × 376@100F PS

Intel SR300 640 × 480@60F PS 640 × 480@60F PS

Intel D435 1280 × 720@30F PS 640 × 480@90F PS

Proposed 1280 × 1024@210FPS 640 × 512@800FPS

become the standard approach since they provide the additional

depth information that helps to resolve ambiguous cases.

High framerate systems. Some systems for high framerate depth

capture have been proposed in the literature [Gong and Zhang 2010;

Höfling et al. 2015; Hyun et al. 2017; Zhang et al. 2010; Zuo et al.

2013], but the required hardware is bulky and prohibitively expen-

sive as they rely on dynamic patterns from high-speed projection

technology. Conversely, our system could be realized with off-the-

shelf hardware such as a $5 VSCEL and a $3 Sony IMX camera

typically used in mobile phones for slow-motion videos. The hy-

brid system recently proposed by Lu et al. [2017] combines a low

framerate depth sensors such as Kinect with a high speed RGB cam-

era, producing 500fps depth with 20ms latency. The authors show

promising results for simple tracking applications, but the generated

depth maps exhibit high levels of noise, which is not acceptable for

precise tracking. Although higher speed consumer depth sensors

are available on the market, such as the DUO MLX and the ZED,

these use passive illumination, thus they produce high speed depth

at a much lower quality than our active sensor. Moreover passive

sensors do not work in low light conditions. Further, our system

captures images with 34× more pixels than the DUO MLX, and

2.5× more pixels than the ZED; see Table 1 for a comparison with

commercially available sensors. Recent works in depth estimation

[Fanello et al. 2016, 2017b; Keselman et al. 2017] show that triangula-

tion systems can achieve high quality results with very low compute.

In particular, Fanello et al. [2017b] presented a 210Hz depth camera,

but this system suffers significant limitations when capturing fast

motion; see Section 6. To cope with these shortcomings, we propose

a novel hardware solution that uses VCSEL technology as opposed

to traditional single-mode lasers and DOE systems (such as in Struc-

tureIO). In contrast to single mode lasers, we use VCSELs which

are more efficient in terms of power consumption. We demonstrate

better SNR performance using this hardware allowing for a lower

exposure time and a reduction in generated motion artifacts. On

the algorithmic side, we extend [Fanello et al. 2017b] with a novel

space-time stereo matching scheme.

Space-time stereo matching. Previous work [Davis et al. 2005;

Zhang et al. 2003] cast the task of depth estimation as a space-time
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stereo matching task. The general idea consists of aggregating the

matching cost across both space and time. These methods focus

on high quality reconstruction, therefore they pay little consider-

ation to the overall running time. As a consequence, they use an

exhaustive disparity search across both the spatial and temporal

domain, making them intractable for real-time performances. In

addition, these methods fail for fast motion, which can result in

inconsistent observations in the left and right cameras. In contrast

to previous work [Davis et al. 2005; Zhang et al. 2003], our compu-

tational requirements do not increase when employing a temporal

window. Indeed, our matching cost is independent of the window

size. Moreover, given the high speed of the cameras and the capabil-

ity of processing all the frames in real-time, we are more robust to

fast motion. Finally, disparity optimization is carried out in parallel,

as opposed to the sequential PatchMatch-like search of [Fanello

et al. 2017b].

3 OVERVIEW

In the following sections, we show how to build the first complete

system, from hardware design (Sec. 4) to software implementation

(Sec. 5), capable of capturing depth images at high framerate, resolu-

tion and quality without artifacts typically caused by interference

between multiple sensors being operated simultaneously. We qual-

itatively and quantitatively evaluate these improvements (Sec. 6),

highlight how they significantly impact a number of real-time dense

tracking applications (Sec. 7), and present the applicability of our

cameras to low-latency passthrough in mixed reality scenarios

(Sec. 8).

4 SENSOR BLUEPRINT – HARDWARE

Commercially successful commodity depth sensors based on active

illumination mostly fall into these categories: Time-of-Flight (TOF),

Temporal Structured Light (TSL), Spatial Structured Light (SSL), and

Active Stereo (AS); see Appendix A for a detailed discussion. Due to

temporal integration, TOF and TSL cameras either require extremely

high (2000fps) framerate projector/cameras, or they result in sys-

tematic artifacts which researchers have recently been attempting

to resolve [Gupta et al. 2015; O’Toole et al. 2014]. SSL sensors can

theoretically provide high-frame rates, but they severely interfere

with each other, hence limiting their applicability. AS sensors do not

suffer any of these shortcomings, and recent work has substantially

reduced their computational burden [Fanello et al. 2017b]. For these

reasons, we selected Active Stereo as our sensor architecture.

Camera choice→ OnSemi Python 1300. The ability to successfully

track a fast moving object is heavily influenced by the resulting

motion displacement between image frames as well as induced mo-

tion blur. Large displacements and motion blur make tracking more

unstable, and in some cases intractable. The amount of displace-

ment and motion blur can be controlled by the camera framerate

and exposure time, respectively. Ideally, one would desire having

both high frame-rates and low exposure times, but these values are

constrained by capabilities of commodity cameras and illuminators.

Thus, our camera module should be a (1) commercially available

off-the-shelf camera, (2) be easily interfaced with, (3) be capable

of achieving high frame rates, and (4) be a high resolution global

Fig. 3. (left) In the additional materials we provide CAD fabrication mod-

els for our active stereo camera systems at different baselines. (right) The

55mm baseline for exo-centric short range interaction (depth only), 80mm

baseline for ego-centric VR headsets (depth+RGB) and hybrid 200mm/55mm

for long range (full body, depth+RGB) capture.

shutter sensor with good quantum efficiency in the infrared (IR)

spectrum.

In order to determine a sufficiently high frame rate and exposure

time, we work backwards by considering the extremely high speed

motions that occur in full body sports scenarios and from rapid

hand movement. In particular, we consider a punch from a boxer as

well as the snap of a finger. These motion trajectories correspond

roughly to a velocity of 12 m/s. We consider a camera with a field of

view of 65 degrees, SXGA resolution that captures at 30fps with an

exposure time of 33ms – typical values in commercial sensors like

the Kinect v1. When the subject is 1m away from the camera, the

induced motion blur and screen-space displacement is about 500

pixels, with 500 pixels of motion blur between the two consecutive

frames, ultimately making frame-to-frame tracking very difficult;

see Figure 2. Taking these aspects into consideration, we considered

the spectrum of widely available off-the-shelf high speed cameras

and selected the OnSemi Python1300 packaged as a USB3 module by

Ximea. This infrared sensor is capable of achieving a framerate of

210fps at a spatial resolution of 1280 × 1024 with a 1ms exposure

time1. In the previously detailed scenario, this results in an 80 pixels

displacement and only 16 pixels of motion blur; see Figure 2 and

Section 7. While the Ximea scientific camera module is relatively

expensive at around ≈ $800, we could also leverage mobile sen-

sors such as the Sony IMX. This sensor has a better SNR/Quantum

efficiency and framerate than the Python1300, and a cost of only

≈ $3 (excluding lenses). However, there are still no devkits available

for these cameras, therefore the final users are required to write

their own custom drivers and build appropriate data transfer in-

terfaces. We note that the choice of the sensor in this work is

purely a function of the availability of off-the-shelf hardware. When

designing for an actual product these would have to be considered

1Note that our current software stack and algorithms support future releases of the
sensors up to 1000 fps at SXGA resolution.
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Fig. 4. We target an average expected error of 4mm to select our baselines

(constrained by cameras form factors). Our hybrid 50mm/200mm capture

pod delivers an excellent tradeoff of range vs. precision.

ground up. For instance, we were bound by the USB bandwidth for

the data transfer, but there are sensors that are available such as the

Sony IMX range of sensors that are capable of upwards of 250fps

via a MIPI interface that would be more amenable when design-

ing such a depth sensor from ground up. Note that such sensors

are already mass market, and are available on most recent mobile

devices to allow for slow-motion video capture. One of the most

recent sensors on the Samsung Galaxy S9 range of mobile devices

boasts of a ultra high speed 12 Megapixel sensor capable of 720p at

960fps exemplifying the availability of high speed sensors on mobile

platforms.

Stereo module→ baseline and resolution. We mount two Python

1300 sensors in a rigid machined aluminum housing; see Figure 3-

(left). The depth precision of a stereo system is governed by the

baseline, camera resolution and the focal length. Due to our sensor

choice we fixed the maximum resolution at 1280 × 1024 pixels and

focus on optimizing the baseline; see Figure 4. In Section 4.3 we

detail the choices of lenses that in turn affect the system resolution.

In stereo systems, a larger baseline delivers more precise measure-

ments but results in larger occlusions and foreshortening, which

makes the matching process harder for objects close to the cam-

era. Therefore, depending on the tracking scenario we use different

camera baselines. Our specific choices of the baselines were driven

by the sizes of the modules. In the case of a desktop scenario, for

applications such as hand tracking, we chose a baseline similar to

products such as Leap Motion while ensuring that we can pack the

cameras in a tight configuration, which gave us a baseline of 55mm.

In the case of a head-mounted scenario where we would want to

capture close interactions such as the hands of the person wearing

the headset while being able to reconstruct the room the user is

in, we designed the baseline to closely match those of room scale

stereo systems, such as Kinect and StructureIO, while keeping the

cameras as close to each other as possible, resulting in a baseline

of 80mm. Lastly, we built a 200mm baseline pod that allows us to

capture the full-body of a person in the center of a multi-sensor rig;

see Fig. 3. This baseline allows us to reduce the depth error further

away from the camera.

Illuminator→ Infrared VCSEL. Effective stereo matching requires

the scene to be textured with a locally unique pattern. One choice

for the illuminator is a low power single mode laser coupled with

a Diffractive Optical Element (DOE) and replicator stack that can

generate a pseudo random pattern. This approach is used in com-

mercial depth sensors such as Microsoft Kinect V1, StructureIO,

Microsoft Kinect v1 Single VCSEL Twin VCSEL (ours)

Fig. 5. Illumination patterns used by active stereo and structured light

system. The Kinect uses a DOE pseudo-random dot pattern, while we use a

VCSEL. This can result in spatial repetitions in the pattern, which we avoid

by employing two illuminators slightly rotated with respect to each other.

and in [Fanello et al. 2017b; Orts-Escolano et al. 2016]. However,

for short exposure times (1 - 5 ms) such an illuminator does not

offer enough SNR for low reflective surfaces and hence results in

fairly sparse depth maps. Unfortunately, higher power lasers can-

not be used together with a DOE due to eye safety reasons [OSHA

2017]. Therefore, we leverage the recent success in VCSEL-based IR

illumination used in structured light projectors such as the Google

Tango tablet and Mantis Vision scanners. A VCSEL emits the light

from a much bigger surface than a DOE and therefore can project

much more light while still being eye-safe. VCSELs have also been

shown to be more efficient than lasers [D’Asaro et al. 2016] and can

emit structured light when coupled with a suitable mask; e.g. see

Google Tango and Mantis Vision. Conversely, we propose a simpler

solution: we use a pair of VCSELs – each of them generates a regular

grid of dots. One of the VCSELs is slightly rotated with respect to

the other so that the combination of the two patterns results in the

locally unique pattern shown in Figure 5. In order to maximize the

SNR captured within the short exposure time we additionally pulse

the illuminator in sync with the camera in such a way to reduce

contamination from ambient light. By pulsing the illuminator we

can reduce the exposure time of the camera to 2ms, as well as the

energy consumption due to a reduced duty cycle.

4.1 Multi-sensor and multi-illuminator setups

Multiview tracking scenarios require multiple depth cameras to

work together without interference. Our active stereo system is

naturally robust as the only assumption that we make about the

projected pattern is that it is locally unique. As the combination

of two unique patterns results in another unique pattern, multiple

depth cameras can actively illuminate the same surface without

causing interference. However, two depth cameras that directly face

each other can result in saturation in parts of the image due to lens

flare – scattering of light from one illuminator in the lens of the

other camera. In order to mitigate this effect, we pulse the VCSEL

projectors. Recall that due to pulsing each illuminator and camera

is only active for 2ms. If the cameras run at 210fps we will have a

gap of 4.75ms between two consecutive frames. This means that we

can temporally offset the exposures of cameras such that they do

not interfere, while still maintaining the target frame rate of 210fps.
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static pattern dynamic pattern

Fig. 6. (left) A constant structured light pattern results in visible depth

bias for static scenes. (right) A temporally dynamic pattern combined with

spatio-temporal matching windows corrects these artifacts.

4.2 Dynamic pattern – bias correction

Triangulation methods that make use of spatial active illumination

suffer from bias due to the particular structure of the projected

dot pattern; see Figure 6-(left). Even when we aggregate multiple

frames over time, the structured nature of the noise generates errors

that cannot be mitigated via simple averaging schemes. Butler et al.

[2012] showed that bias and interference in standard structured light

can be reduced through small motion of the illuminator. We imple-

ment a temporally varying pattern by using a four VCSEL setup,

where each is mounted at a slightly different angle, and randomly

flashing
(4
2

)
+

(4
3

)
combinations in succession; We implemented this

solution in our 200mm baseline pod, which has enough space to

accommodate four VCSEL illuminators; see Figure 3-(bottom right).

The results of this process are showed in Figure 6 where one should

notice the absence of artifacts on the body, and the high frequency

details of the face. Also note that the reconstruction is more com-

plete, especially in low SNR regions such as hair.

4.3 Hardware components

Lenses. The camera lens affects the field of view and hence the

stereo system resolution. Sourcing lenses with exact characteristics

for F number, focal length, field of view etc. is a cumbersome task

due to limited availability of options. While the right approach is

to build custom lenses designed for the specific scenario, building

such custom lenses turns into a very expensive endeavor. In our

depth camera, all the options we built have an M12 or an S-mount

lens holder. We therefore resort to off-the-shelf M12 lenses from

companies such as Megapixel Lenses, Uxcell and Lensation. We

provide three different solutions, that in our experience, cover most

of the high-level computer vision and HCI applications we devel-

oped. For short-range scenarios we found that a 60 deg field of view

lens is satisfactory. This includes applications like gesture recogni-

tion in front of a laptop and object scanning. We used a 6mm lens

from Megapixel Lenses for this scenario (model number 130620MP).

In ego-centric scenarios, such as in VR applications, wide field of

view lenses are preferred, therefore we selected a 3.6mm Uxcell lens

(model number US-SA-AJD-69585) that can cover up to a 90 deg

field of view. Finally for full body capture applications [Dou et al.

2017] we use a wide field of view (80 deg) lens with low distortion

which provides high quality capture results. For this case we used a

Lensation lens (model number BSM6016S12).

Fig. 7. (left) Underlying PCB. (right) VCSEL illuminator pair where two

illuminator modules can be soldered in series and driven using one constant

current LED driver.

Illuminators. The choice of the type of illuminator used for the

active stereo sensor is also an important one that defines the quality

of depth obtained. There are a number of options when deciding the

illuminator to use. Our initial experiments were using a commonly

used illuminator that involves a DOE and an edge emitting laser

(as in Kinect v1, StructureIO). However, our observation was that

at very low exposure times, as required by a high speed depth

camera the SNR of such illuminators was very poor. In addition,

these illuminators cannot be driven at high currents as this takes it

away from an eye-safe IR margin. In our case we use a VCSEL based

illuminator by Heptagon called Lima. This consists of an array of

VCSELs operating at a wavelength of 850nm and a microlens array

above it that produces a regular grid of dots as shown in Figure 5.

In contrast to the DOE based solutions (Kinect v1 and StructureIO)

the dots produced by the microlens array has a much larger pixel

footprint, specifically the spot size from the Lima is about 2 to 3

times wider than that of a Kinect v1; see Figure 5. The larger spot

size however provides more signal for matching in the active stereo

setup. The field of illumination of the Lima illuminator is around 85

degree diagonal that closely matches the field of view of the lenses.

As discussed, we reduce the ambiguity in stereo matches by using

two Lima modules rotated with respect to each other. These are

soldered onto PCB shown in Figure 7 such that the illuminators are

connected in series. The illuminator pair is then driven by a 1000mA

LuxDrive BuckBlock, which is a constant current LED driver with a

dimmer that allows us to pulse the illuminator synchronized with

the camera exposure. We note that more recently illuminators that

use a VCSEL along with a DOE have been proposed, such as the

Apple iPhoneX, however these are not available off-the-shelf. These

could, however, be viable alternatives. At high frame rates, thermal

and power considerations are important. In all our experiments,

we power the illuminator in sync with the short exposure time of

the camera, thus ensuring that the duty cycle is low and the power

consumption is kept in check. In practice, the scenario the sensor is

being applied to, defines the form-factor and power limitations of

the system. For instance, a room scale sensor could have a larger

form factor and incorporate large heat sinks if the system needs

to be driven at a high power, whereas for a mobile form-factor we

have seen a viable solution evident in the iPhoneX.

IR Filters. Given the lens and the illuminators above, the last

part for the IR optical path is the filter. We need a filter that has
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frame (t-2)

frame (t-1)

frame (t)

Fig. 8. Each pixel in a sequence of IR stereo images, a binary descriptor is

computed from a spatio-temporal neighborhood x = [x1, x2, x3].

a narrow bandwidth centered around the primary wavelength to

ensure we suppress as much ambient light as possible, ensuring a

high SNR at the specific IR wavelength. In this case, we employed

IR filters with a thickness of around 1mm centered at 850nm with a

bandwidth of around 15nm manufactured by Omega Filters. These

were purchased as square filters cut to match the hole at the back

of our CAD models, and were glued onto the back such that they

lie between the lens and the sensor.

5 SENSOR BLUEPRINT – SOFTWARE

We now describe the software pipeline for the active stereo depth

sensor described in the previous section. As detailed in Scharstein

and Szeliski [2002], a general stereo matching pipeline comprises

three main components:

• Matching cost – Section 5.1: defines the distance or similarity

between two image patches.

• Disparity optimization – Section 5.2: searches corresponding

patches in the two images minimizing the matching costs.

• Disparity refinement – Section 5.3: postprocess disparities in

order to achieve subpixel precision and reject outliers.

We contribute to each stage of the stereo pipeline. First, we design

a space-time matching solution that leverages the high framerate

stream. Then, we exploit the temporal coherency in the disparity

optimization stage. Finally, we we address outlier rejection problem

using a computationally efficient machine learning model.

5.1 Matching cost computation

Given an image patch xL in the left image and an image patch xR in

the right image, we want to compute a matching score. The patch

size needs to be big enough to uniquely identify a pixel based on the

texture in its surrounding area. Typical patch sizes for active stereo

are 11 × 11 windows for 1.3 Megapixel images. Traditional stereo

correlation functions compute differences between every pixel of

the two patches, and produce a score that is used for disparity

optimization. The computational cost of these methods increases

with the patch size and therefore are not well suited if many disparity

hypotheses need to be evaluated; see Section 5.2.

spatial matching spatio-temporal matching

Fig. 9. Using only spatial information for matching results in missing data.

Using temporal information gives more complete results because more

information is embedded in the spatio-temporal domain.

Learnt matching space. Applying Fanello et al. [2017a] to our

problem, each spatio-temporal image patch x is converted to a 32-

dimensional binary code as b = siдn (xW), where W ∈ Rn×k has

been learnt so that every column contains at most b = 4 non-zeros.

We then define the cost function between two image patches xL and

xR as the Hamming distance between the codes bL and bR . This

results in a complexity that is independent from n, the number of

pixels in a patch/window.

Exploiting temporal coherency. In high speed sensors we can safely

assume that the motion between subsequent frames is very small,

hence we can extend the approach above to mapping of spatio-

temporal patches. As the shape remains roughly constant over small

periods of time, we can use a straight spatio-temporal image volume

x with dimensions n = P ×P × F , where P is the spatial window size

and F is the number of frames in the temporal buffer; see Figure 8.

Note how, sinceW is learnt to be b-sparse, our spatio-temporal map-

ping is also independent of F . In order to take advantage of temporal

windows, the appearance of the patch needs to change over time to

be able to ensure the information added across multiple frames is not

redundant. We achieve this by dynamically changing the projected

pattern over time as detailed in Section 4.2. The benefit of matching

with a spatio-temporal window is threefold: (1) It reduces noise in

the matching; see Figure 9 and Figure 10. (2) It allows for smaller

spatial windows that ensure reduced edge fattening, resulting in

better performance along depth discontinuities; see the edges of the

sphere in Figure 10. (3) It removes bias artifacts caused by active

stereo matching (for static objects); see Figure 6.

5.2 Disparity optimization

Disparity optimization is the most expensive part of the stereo

matching pipeline. Given the mapping of each pixel pi in both im-

ages to a binary code bi , our optimization aims at finding the best

disparity assignment for each pixel without evaluating all possible

disparity labels d (respectively 256 or 512 labels for short and wide

baselines in our implementation).While many recent works [Fanello

et al. 2017b; Orts-Escolano et al. 2016; Pradeep et al. 2013] optimize

for disparity via a PatchMatch search [Bleyer et al. 2011], in this

paper we investigate the applicability of the more computationally

efficient parallel inference technique presented in [Fanello et al.

2017a]. These changes allowed us to achieve a two-fold increase in

the performance of disparity optimization from 500fps to 1000fps.
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Synthetic Infrared Synthetic Depth

Spatial Matching (SM) Spatio-Temporal Matching (STM)

SM STM 0-5 STM 6-20 STM 21-40 STM 41-60

Error (mm) 1.08 0.76 1.35 1.48 1.8

Valid (%) 71 89 78 72 67

Fig. 10. Quantitative evaluation on synthetic data. We move a sphere 3.5m

away from the camera horizontally in front of a wall (1.5m distance). We

synthesize two IR views using our projected pattern, as well as ground truth

disparity in Blender. With small displacements STM performs favorably to

SM, while the error does not degrade significantly with larger displacements.

Most importantly, note how the number of valid pixels is much larger than

for SM, and this holds even at very large displacements (21-40 pixels range).

Assuming an objects at 1.5 distance from the camera, a 20 pixel displacement

at 210 fps means a speed of 5m per second. For the considered applications

(i.e. performance capture and tracking of humans) this motion is very large.

We initialize the image by testing 32 random disparities for each

pixel, and then selecting the one with the smallest Hamming dis-

tance in the binary space. Each pixel pi has now associated a certain

disparity di . To perform the actual optimization, we now test all

disparity labels in a 3×3 neighborhoodNp of the pixel pi and select
the one with the best cost. The cost optimization problem is defined

as:

arg min
d ∈Np

|bLp − bR
p+d

|

︸��������︷︷��������︸
distance

+
∑

dk ∈Np

max(τ , |dk − d |)︸��������������︷︷��������������︸
smoothness

(1)

where the first term is the Hamming distance between the codes at

the pixel p in the left image and the codes computed at the location

p +d in the right image. Note here that we use a simplified notation

referring only to the pixels on the same scan-line. Therefore a pixel

p is defined only by its x component and p+d is a shift along that di-

mension. The second term enforces smoothness among neighboring

pixels. Since we are considering d ∈ Np potential solutions, we can

solve Eq. 1 efficiently on the GPU by enumerating all the elements

as |Np | = 3×3 and select the best one. To allow for disparities to get

propagated in large areas of the image, we run multiple iterations

to solve Eq. 1 in the 3 × 3 neighborhood. We empirically noticed

that 4 iterations are enough to reach convergence.

Exploiting temporal coherency. We also extend this optimization

scheme to exploit high frame rate data in the initialization step. In

particular, for each pixel p at time t , we test its previous disparity at

time t − 1. If the Hamming distance is lower than all the 32 random

disparities we keep the previous values and use that to initialize

the iterative optimization. We find that typically, given a 210fps

sensor, most of the pixels will have the same disparity between two

consecutive frames, and thus this considerably increases accuracy.

raw output outlier rejection

Fig. 11. We remove false positives from the disparity map using a data

driven approach. Given a pixel in the disparity map, a decision tree sparsely

samples its spatial neighborhood to predict whether the pixel should be

invalidated. The overall running time is 100μs per frame. Notice also that

the temporal initialization scheme proposed in Section 5.1 automatically

corrects some of the wrong estimates in the disparity maps. As consequence,

the rejected pixels have some chances of being correctly recovered in the

next frame and the disparity map appears more complete.

Our results are visualized in Figure 9, notice how our approach

has on average 15% more valid pixels than the standard matching

scheme without temporal information (see also Figure 10).

5.3 Disparity refinement

Subpixel refinement. To achieve subpixel precision, we use a stan-

dard parabola interpolation. Given a pixel p with a disparity d we fit

a parabola by considering the disparities d−1 and d+1. We compute

the Hamming distances of the binary codes for the disparities d ,
d − 1 and d + 1 and fit a quadratic function. The best disparity lies

at the global minimum of this function, therefore we pick this as

optimal value. We couple this step in the optimization scheme and

repeat the fitting at the end of each iteration and for every pixel.

Outlier rejection. The traditional approach in stereo vision com-

munity is to apply a cross-check to detect and remove outliers

[Scharstein and Szeliski 2002] followed by a weighted median filter-

ing using an RGB image. This process requires the computation of

two disparity maps for each frame, which is prohibitively expensive.

In this paper, we propose a novel method that learns the invalidation

function directly from data. We collected training data by recording

about 10000 disparity maps of arbitrary indoor scenes, and 5000

images for testing. We generated ground-truth data by running

traditional outlier rejection methods such as left-right disparities

cross-check, as well as a weighted median. To compute the weighted

median we mount an RGB sensor next to our active stereo sensor

that we synchronized and calibrated to our system (the RGB sensor

is only needed at training time and not at runtime). For training we

mark each pixel as either valid or invalid, depending on the result

of the cross-check and median filter. Given this ground truth, we

learn a function that decides to either invalidate or accept a given

disparity. In order to keep the computation low and independent of

image resolution, we perform this outlier rejection using a decision

forest [Shotton et al. 2013]. A node in our decision tree contains

two learned pixel offsets u = (Δx ,Δy) and v = (Δx ′,Δy′) and a

threshold value τ . When evaluating a pixel at position p = (x ,y),
the tree decides where to route a particular example based on the
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Fig. 12. Depth precision of proposed hardware versus competing methods.

We compare our method against PatchMatch Stereo [Bleyer et al. 2011],

HashMatch [Fanello et al. 2017a] and UltraStereo [Fanello et al. 2017b].

sign of I (p + u) − I (p + v) > τ , where I (p) is the intensity value of

a pixel p. At training time we randomly sample 500 possible split

parameters δ = (u, v,τ ) for the current node. Each δ induces a split

on the set S of the data into left SL(δ ) and right SR (δ ) child sets. We

select the set of parameters δ that maximizes the Information Gain:

IG(δ ) = E(S) −
∑

d ∈L,R

|Sd (δ )|

|S |
E(Sd (δ )) (2)

where E(S) is the Shannon entropy of the empirical distribution

p(valid |S) of the class label “valid” in S . Each leaf node contains a

probability p(valid |p, I ) and we invalidate pixels when this quantity

is less than 0.5. In Figure 11 we show an example of our invalidation

strategy based on a decision tree. A single tree with 12 level is

enough to reach 98.25% accuracy with a runtime speed of 100μs per
frame; see Figure 11 for an example. In comparison, a traditional

min-region check executes in 1ms.

6 COMPARISON WITH THE STATE-OF-THE-ART

Precision of depth estimation – Figure 12 and Figure 13. We first

evaluate the precision of the depth algorithm. We use the proposed

hardware and collect multiple images of a flat wall at various dis-

tances ranging from .5m to 3.5m. We robustly compute ground

truth depth by fitting a plane to the depth data and calculate the

Fig. 13. Qualitative comparisons with UltraStereo [Fanello et al. 2017b], and

a variant of this method including the initialization from Sec. 5.2. Notice

how the proposed space-time stereo provides more complete disparity maps

in low SNR regions (e.g. hair) as well as in slanted regions.

Fig. 14. We compare different illuminators (UltraStereo [Fanello et al. 2017b]

vs. the one we propose) while keeping the depth algorithm fixed (our algo-

rithm). Notice how for very low exposure time (i.e. low SNR) our solution

outperforms DOE illuminators.

error averaging across multiple frames. In Figure 12, we report the

results for various competitors – notice how the proposed algo-

rithm achieves the lowest error. Additionally, to better highlight

the improvements of our system, we show qualitative results in

Figure 13. Here we compare the method with [Fanello et al. 2017b],

as well as with a modified version where we exploit the initializa-

tion scheme described in Sec. 5.2: in this way we can separately

evaluate the contribution of the temporal initialization and the

spatial-temporal matching scheme we propose. The proposed so-

lution produces smoother disparity maps, with less holes in low

SNR areas like hair and slanted surfaces. Further, the computational

complexity of our method is half the one proposed in [Fanello et al.

2017b].

Impact of different illuminators – Figure 14. In our second experi-

ment, we evaluate the benefits of the proposed pattern/illuminator,

compared to the one used in [Fanello et al. 2017b]. In particular,

we recorded a flat wall at 2.5m varying the exposure time of the

camera from 5ms to 100ms. We recorded data using the proposed

illuminator, as well as the one used in [Fanello et al. 2017b]. For

both the illuminator we use the same amount of power (≈ 220mW)

and we fix the depth algorithm to be the one proposed in this paper.

To assess the impact of the illuminators, we compute the average

error on a single frame at different exposure time. Notice how our

pattern exhibits very low error at 5ms exposure time, whereas the

DOE used in [Fanello et al. 2017b] reaches a similar behavior at

30ms.

7 APPLICATIONS TO REAL-TIME TRACKING

We now consider multiple tracking applications as to qualitatively

and quantitatively evaluate our system. In particular, we show the

effectiveness of high framerate streams for all of these applications.

In a general tracking problem, we assume a camera sensor providing

a stream of depth images {Dt }. The goal of a tracking method is

to find the pose parameters θt ∈ R
d that describe the pose of the

object of interest at the time t according to the current data Dt .

Often such problems are cast as an energy minimization problem:

argmin
θ

Edata (θ ) + λREr eд(θ ) (3)
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Fig. 15. We track a tennis ball over time and plot the tracked positions over

time; see Figure 2. Tracking with high framerate data is closer to the GT

than using low framerate data.

The data term Edata (θ ) describes how well the solution describes

the current observations. The regularization term Er eд(θ ) helps
to choose a sensible solution in under-constrained problems. The

form of these two energy terms strongly depends on the considered

application. A common approach is to define smooth energy func-

tions suitable for gradient based local optimizers such as Levenberg-

Marquardt (LM). In these optimization schemes, the initialization

of θ plays a crucial role and typically the pose θt−1 in the previous

frame is employed as an initialization. However, when the object

of interest moves at high speed, the pose θt at time t can deviate

largely from that of the previous frame making it increasingly likely

that this initialization is not in the basin of convergence of a good

local minimum (i.e. a local minimum that corresponds to the true

pose). State-of-the-art systems try to cope with this by either de-

signing complex reinitialization systems [Taylor et al. 2016], or by

computing additional correspondences via SIFT features [Innmann

et al. 2016], learnt hash functions [Dou et al. 2016] or spectral em-

beddings [Dou et al. 2017]. Conversely, we provide a capture

technology capable of producing a real-time 210fps stream of high

quality depth images. In this setting interframe motion is drastically

reduced, hence increasing the chance that the optimizer starts in

the basin of convergence of a good local minimum; i.e. that track-

ing succeeds. The capabilities of our high-framerate sensor, and its

advantages across a number of applicative domains, can be better

appreciated in our supplemental video.

Tracking evaluation design. We recorded very challenging se-

quences where subjects or objects were moving with high speed.

The raw data consists of 210fps IR images and RGB (used only for

visualization purposes) recorded with 2ms exposure time. We then

subsampled the raw data to generate 30fps data with the same ex-

posure time, and finally we simulated a standard 30fps with 33ms

exposure time by averaging multiple frames; this approximation

holds when the SNR is sufficiently high, which is true with our

pulsed illumination. We tuned our depth algorithm to achieve the

best results in each setting. We also tried a GPU version of Patch-

Match Stereo [Bleyer et al. 2011], running at 60Hz, but we did not

notice substantial changes in the depth quality. Indeed, in active

stereo, local methods have proved to achieve high accuracy at par

with more expensive global methods. In the following, we process all

30fps 210fps

Fig. 16. A fast moving camera scanning the room: notice how at 30fps the

tracker loses its position and duplicate surfaces appear.

three data streams (“210fps - low exposure”, “30fps - low exposure”

and “30fps - high exposure”) in the various tracking pipelines with

exactly the same computational budget. This means that we can

only run 1 iteration of Levenberg-Marquardt for the 210 fps data,

whereas for the 30 fps data we can run 7 iterations. In the following,

we show that high framerate data is needed to achieve convergence

of the algorithm, and that with standard 30fps data we cannot infer

the correct solution even though many more iterations of the solver

are used.

7.1 Parametric tracking – [Nakabo et al. 2000] – Fig. 15

In parametric tracking, the model of the tracked geometry is known

and the six dimensional transformation of the model is to be inferred

from the input data. We recorded a 2000 frame long sequence of a

fast moving ball as shown in Fig. 2-(right). We initialize the tracking

for the first frame using the RGB information and then use the

known geometry of the sphere to track its motion over time. We

Type of data 30fps high exp 30fps low exp 210fps

Fitting error (in mm) 2.89 ± 0.63 2.76 ± 0.65 2.37 ± 0.46

Fig. 17. Each column shows a raw IR image on top, and the tracked hand

rendered on top of the depth map on the bottom. While the changes in

average fitting error of 3000 frames might seem small, tracking at a high

framerate results in remarkably more robust hand tracking.
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input RGB alignment error fitted model

Type of data 30fps high exp 30fps low exp 210fps

% frames < 3mm error 69.5% 70.1% 74.5%

Fig. 18. We color-code per-pixel error in the range [0, 10]mm from green to

red. Our quantitative analysis shows how using a higher framerate performs

better although less compute is spent.

use a combination of color and geometry information to generate

reliable ground truth for this sequence. In Figure 15, we plot the

ground truth data along with results on the three test data streams.

When using the “30fps - high exposure” we have significant amount

of motion blur; see Figure 2. Interestingly, the motion blur actually

helps the tracker to not fail, but the tracking error is much higher.

When “30fps - low exposure” data is used, the tracker fails to follow

the ball after few frames due to the large displacement in the image.

For the “210fps” data (red dots) we are able to recover the full motion.

7.2 Rigid fusion – [Newcombe et al. 2011] – Fig. 16

In rigid fusion our target is to determine the camera position within

the scene, and then fuse the depth data into a non-parametric ref-

erence surface representation. To compare high and low framerate

data for rigid tracking we recorded a sequence of a fast moving cam-

era in a standard indoor scene and we reimplemented KinectFusion

[Newcombe et al. 2011] to perform a rigid reconstruction of the

environment. We show qualitative results in Fig. 16: for both “30fps

- low exposure” and “30fps - high exposure” data the tracking is

lost and the algorithm creates duplicate surfaces in the scene. Con-

versely, for the high speed data the scene is reconstructed correctly

with no substantial errors.

7.3 Hand tracking – [Taylor et al. 2017] – Fig. 17

In articulated hand tracking our task is to estimating the pose pa-

rameters of a human hand. We use [Taylor et al. 2017], specifically

designed to run with high frame rate depth streams, to track the

hand pose, and report the fitting error in Figure 17-(bottom). The

high frame rate 210fps data achieves lower fitting error across all

the data in comparison to the 30 fps data. Note that while this aver-

age error might seem small, the differences in regressed poses are

dramatic as illustrated by the failure cases in Fig. 17-(top).
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Sequence 1 Sequence 2 Sequence 3 Sequence 4

Type of data 30fps high exp 30fps low exp 210fps

Fitting error 2.7 ∗ 105 2.1 ∗ 105 1.3 ∗ 104

Fig. 19. In each column we report the non-rigid reconstruction at the last

frame of different sequences (≈ 3000 frames). Notice how the 210fps data

achieves an order of magnitude lower fitting error than the 30fps data.

7.4 Face tracking – [Thies et al. 2016] – Fig. 18

In our facial tracking test, we regress the rigid transformation as

well as shape and pose parameters encoded in a low-dimensional

blendshape representation [Blanz and Vetter 1999]. We recorded

sequences of subjects performing arbitrary facial expressions, and

quantitatively evaluated the data fitting error; see Fig. 18. Notice

that although we use 7 iterations for both “30fps - low exposure”

and “30fps - high exposure” data, the retrieved solution is not able

to match the precision of the high speed stream.

7.5 Non-rigid fusion – [Dou et al. 2017] – Fig. 19

In non-rigid fusion our task is to progressively reconstruct a non-

parametric model of the object being observed [Newcombe et al.

2011], while simultaneously determining the parameters of a non-

rigid deformation model [Sumner et al. 2007]. In Figure 19, we

use our reimplementation of [Dou et al. 2017] and show how fast

motions cannot be handled at low framerate. Notice how the tracking

error completely breaks the reconstruction or generates additional

surfaces, a phenomenon that is clearly measured by an order of

magnitude lower error when executing on data acquired at 210fps.

Similarly to face tracking, we only need 1× LM iteration at 210fps,

while 7× iterations are necessary at 30fps.

8 LOW LATENCY VIRTUAL REALITY

Depth information plays a crucial role in perceiving the world in

virtual reality. The use of traditional RGB passthrough techniques

would lead to distorted depth perception [Rolland et al. 1995; Takgi

et al. 2000]. To enable precise 3D information of the real world

while wearing a VR device, we use our camera in a first person

view configuration by attaching the sensor to a 6-DoF tracked VR

headset (HTC Vive), see Figure 3, second row. The camera and the

VR environment coordinate systems are aligned using the hand-eye

calibration method described in [Tsai and Lenz 1988]. We back-

project the colored depth map into the 3D environment, essentially
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providing the user with a mixed reality environment in which real

objects in front of the user coexist in the artificial environment,

similar to Intel Project Alloy. The user benefits from being able to

interact both with real and virtual objects and can confidently walk

around in the physical space.

Latency and out-of-body feeling. High frame rate sensing is one of

many crucial aspects in reducing the lag between what is happening

in the real world and what is conveyed into the virtual environment.

High latency causes difficulties coordinating human-to-human in-

teractions, such as passing, tossing and catching objects [Pan and

Niemeyer 2017], shaking hands or performing a high five. Even

when the user is only seeing their own body, high latency can cause

spatial discrepancy between where the user feels their hand is (e.g.

through proprioception and haptic feedback) and where it is being

rendered. This can make hand-eye-coordination challenging and

cause unintentional out-of-body experiences.

Hand-Eye coordination. Most of the experiences in VR, involve a

certain degree of interaction with the virtual world. To enable the

same interactivity with the real-world it is crucial to employ a depth

sensor with very low latency. Although a straightforward solution

consists of employing an off-the-shelf depth sensor, these cameras

usually carry an unacceptable latency for the user, which can fail

simple eye-hand coordination tasks such as catching a real ball

while wearing a VR headset. To this end, we conducted an informal

study evaluating users’ performance at throwing and catching a

ball from a distance of about 150cm. We observed a significant

drop in catching performance at around 66.66 ms latency, which is

the performance of a typical consumer depth camera [Webster and

Celik 2014]. Using our capture system, on the other hand, enables

these interactive scenarios with the real world; see supplemental

video.

Latency in our system. We finally assess the overall latency of the

proposed 3D sensor. There are many steps from capturing to dis-

playing a depth map, each adding latency. Starting with the inherent

delay caused by the exposure time, camera frame rate, data transfer,

processing, rendering and display refresh rate. In order to keep the

continuous capture of the physical world aligned with the virtual

environment, we apply headset transformations from the past (the

point at which the capture presumably happened) to back-project

depth pixels into 3D space. We measured the total latency between a

physical target’s motion and the rendering on the headset with two

synchronized high speed cameras capturing at 240fps (see Fig. 20).

One camera captured the target attached to an HTC Vive controller.

The other camera captured the output of the headset display. Our

depth camera ran at 180fps, while the render loop ran at 100fps

and the HTC Vive at 90fps. This results in a theoretical minimum

latency of 26.66ms. We performed a frame-by-frame analysis of

the motion trajectory of the target and the Vive controller around

the point of lift from a surface (start of motion) and around the point

of impact (abrupt stop of motion). We measured the total motion

to photon latency of the target to be around 8 frames in a 240fps

recording (i.e. 33ms). The VR controller utilizes a combination of

absolute optical pose tracking and IM-based pose prediction. In our

analysis of the controller’s motion trajectory, we observed a motion

Fig. 20. Frame-by-frame motion trajectory and latency analysis. Left: direct

slow motion capture of a HTC Vive controller with a physical target. Right:

slow motion capture of depth rendering through the HTC Vive VR headset.

delay of around 5 frames or 20.83ms with overshooting behavior

and around 11 frames or 45.83ms delay at the point of absolute

pose correction. Our depth capture system’s latency is exactly at

the midpoint of the VR controller’s pose prediction and absolute

pose correction delays and is only slightly above the theoretical

minimum latency.

9 DISCUSSION AND LIMITATIONS

We presented a real-time high speed 3D capture system for visual

tracking problems.We designed the full stack from hardware choices

to the software implementation. We proposed multiple practical and

algorithmic contributions ensuring that each step of the pipeline

can be easily reproduced. We showed how to take advantage of

the high fps to improve state of the art active stereo algorithms,

and evaluated the framework in multiple applications. Our results

show the importance of high speed sensors for a multitude of com-

puter vision problems: from simple model tracking to sophisticated

articulated pose estimation tasks.

Although the proposed system yields substantial improvements

in many tracking related applications, there are still many cases

where even very high speed sensors cannot completely guarantee

tracking failures are avoided:

• In the non-rigid reconstruction case described in Section 7.5,

when a single depth camera is used, the presence of occlusions

cause catastrophic tracking failures, and even state of the art

methods [Guo et al. 2018] are very unlikely to recover.

• At short exposure times the system can still struggle to obtain

accurate depth measurements on very dark surfaces (e.g. an

object painted blackt).

• Due to the effective resolution of our pattern and camera,

obtaining depth measurements on very thin structures at

large distances remains a challenge.

• Highly reflective surfaces, such as mirrors, would likely lead

to incorrect 3D reconstructions.

We believe that recent advances in deep learning for depth estima-

tion [Khamis et al. 2018; Zhang et al. 2018] can address most of

these issues.
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A COMMERCIALLY AVAILABLE DEPTH SENSORS

Depth sensing is an active research field for decades and in recent

years a wide range of consumer depth sensors have emerged, rang-

ing from the Microsoft Kinect to the most recent Intel RealSense

technologies. In the research community, passive depth estimation

method based on stereo [Bleyer et al. 2011; Hosni et al. 2013] or mo-

tion [Pradeep et al. 2013] have been proposed. These methods fail at

delivering precise depth measurements due to the lack of texture in

many scenes. Therefore, most commercially successful commodity

depth sensors are based on active illumination and mostly fall into

the categories: time of flight (TOF), temporal structured light (TSL),

spatial structured light (SSL) or active stereo (AS).

Spatial Structured Light (SSL) – e.g. Microsoft Kinect v1. SSL sys-

tems [Geng 2011; Salvi et al. 2010] project a spatial pattern into

the scene that enables uniquely identifying each pixel by looking

at a spatial neighborhood around that pixel. If the spatial code can

be recognized in the observed camera image, a depth value can be

estimated via triangulation. Since this approach estimates depth

from a single image, it is theoretically capable of delivering very high

frame rates. However, depth estimation in these systems is compu-

tationally expensive and hence commercial products have sacrificed

accuracy over speed and resolution (e.g. quantization artifacts in

Kinect V1). Recently proposed efficient variants such as [Fanello et al.

2016] require expensive per-camera training/calibration step, and

fails to provide high quality depth data in multi-sensor applications

due to interference.

Time of Flight (TOF) – e.g. Microsoft Kinect v2. Time of flight cam-

eras such as the Microsoft Kinect v2 have recently gained popularity.

A drawback of TOF is that multiple frames need to be captured in

order to produce a single depth map. For instance, the Kinect v2

sensor captures raw infrared frames at 300fps in order to produce

depth maps at 30fps [Stuhmer et al. 2015]. This means that in order

to achieve our desired output framerate of 210fps we would need a

camera and depth estimation algorithm that is capable of recording

and processing infrared images at 2000fps. This is simply unfeasi-

ble with commodity hardware. In addition to framerate challenges,

the quality of depth maps generated by TOF cameras is affected

by multipath interference (MPI), which occurs when the emitted

light is reflected from multiple surfaces in the scene before traveling

back to the sensor. Despite significant efforts [Bhandari et al. 2014;

Freedman et al. 2014; Gupta et al. 2015; Jimenez et al. 2012; Naik et al.

2015; O’Toole et al. 2014], there is no broadly accepted solution.

Temporal Structured Light (TSL) – e.g. Intel SR300. The temporal

counterpart to SSL is TSL, which project a temporal sequence of

coded patterns into the scene. This temporal code makes it possible

for each projector pixel to be uniquely identified within a calibrated

camera field of view, that observes this pattern over time. After

locating pixel pairs in the projector and camera space that have

the same temporal code, depth can be computed via triangulation.

Although this approach is computationally very efficient it suffers

from the same limitation as TOFs: multiple frames are required for

a single depth prediction. In general, the bigger the depth range

and the higher precision required, the more frames are necessary.

This causes significant problems for high speed scenarios. Such

approaches are prone to motion artifacts and, similar to TOF, pose

significant challenges in terms feasibility of camera hardware.

Active Stereo (AS) – e.g. Intel RealSense D400 series. Active stereo

depth sensing uses a calibrated pair of infrared (IR) cameras together

with an (IR) illuminator that projects a texture into the scene. Depth

is then estimated via triangulation of corresponding points identified

in the two images. The role of the active illumination is to project a

spatially unique texture that helps in the search of good correspon-

dences. Active stereo has the potential to run at high frame rates

because it generates depth on a per-frame basis. Stereo matching

algorithms are historically computationally expensive, but recent

work has demonstrated how to lift this limitation [Fanello et al.

2017b]. Most importantly, multiple AS sensors can work together

without interference, hence our choice for this technology.
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