
Motion2Fusion: Real-time Volumetric Performance Capture

MINGSONG DOU, PHILIP DAVIDSON∗, SEAN RYAN FANELLO∗, SAMEH KHAMIS∗, ADARSH KOW-
DLE∗, CHRISTOPH RHEMANN∗, VLADIMIR TANKOVICH∗, and SHAHRAM IZADI,

perceptiveIO

Fig. 1. 3D Captures with Our System.We propose a new volumetric performance capture pipeline that is robust to fast motions and topology changes and is capable
of reconstructing challenging scenes at 3x the speed of the previous state-of-the-art.

We present Motion2Fusion, a state-of-the-art 360 performance capture
system that enables *real-time* reconstruction of arbitrary non-rigid scenes.
We provide three major contributions over prior work: 1) a new non-rigid fu-
sion pipeline allowing for far more faithful reconstruction of high frequency
geometric details, avoiding the over-smoothing and visual artifacts observed
previously. 2) a high speed pipeline coupled with a machine learning tech-
nique for 3D correspondence field estimation reducing tracking errors and
artifacts that are attributed to fast motions. 3) a backward and forward non-
rigid alignment strategy that more robustly deals with topology changes
but is still free from scene priors. Our novel performance capture system
demonstrates real-time results nearing 3x speed-up from previous state-of-
the-art work on the exact same GPU hardware. Extensive quantitative and
qualitative comparisons show more precise geometric and texturing results
with less artifacts due to fast motions or topology changes than prior art.

CCS Concepts: • Computing methodologies→Motion capture; Recon-
struction;

∗Authors equally contributed to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
XXXX-XXXX/2017/10-ART246 $15.00
https://doi.org/10.475/123_4

Additional Key Words and Phrases: nonrigid, real-time, 4D reconstruction,
multi-view

ACM Reference Format:
Mingsong Dou, Philip Davidson, Sean Ryan Fanello, Sameh Khamis, Adarsh
Kowdle, Christoph Rhemann, Vladimir Tankovich, and Shahram Izadi. 2017.
Motion2Fusion: Real-time Volumetric Performance Capture. 1, 1, Article 246
(October 2017), 16 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
The ability to model the complex pose, shape, appearance and mo-
tions of humans in 3D is a well studied problem in computer graphics
and computer vision. Indeed the sub-field of performance capture,
volumetric or free-view point video and non-rigid reconstruction
has amassed considerable research, ranging from high-end studio
capture leveraging multiple cameras [Collet et al. 2015a] to more
commodity multi-view setups [Dou et al. 2016; Orts-Escolano et al.
2016] or even lighter weight solutions [Innmann et al. 2016; New-
combe et al. 2015].
Recently the potential for supporting this type of performance

capture in real-time has unlocked the potential for exciting new
applications for gaming [Mehta et al. 2017; Shotton et al. 2013],
telepresence [Orts-Escolano et al. 2016] or augmented and virtual
reality [Orts-Escolano et al. 2016]. Systems that have focused on

, Vol. 1, No. 1, Article 246. Publication date: October 2017.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

246:2 • Dou et al.

Fig. 2. Screenshots from Holoportation [Orts-Escolano et al. 2016] and
Fusion4D [Dou et al. 2016] videos.Geometric over-smoothing leads to uncanny
reconstructions especially of faces (top row). Fast motions are supported but by
degrading to noisy data samples in that region c.f. the scarf of the user (bottom
right). Topological changes are also handled by localized resetting of the data
c.f. the ball (bottom left).

general non-rigid scene reconstructions, free from priors or tem-
plates, have shown particular potential, removing the over-fitting
to human-only scenarios or prescriptive shape or motions. These
general approaches allow for non-rigid reconstructions where hu-
mans can interact with objects, perform free-form motions, and
even support topology changes [Dou et al. 2016].
The state-of-the-art in this type of real-time volumetric perfor-

mance capture can be broken down into methods that support a
single RGBD sensor [Guo et al. 2017; Innmann et al. 2016; New-
combe et al. 2015; Zollhöfer et al. 2014] or multiple sensors [Dou
et al. 2016]. Despite the challenge of the single sensor case, given
only a partial view of the scene and occlusions, these systems have
shown impressive results but with careful and orchestrated motions
[Innmann et al. 2016; Newcombe et al. 2015; Zollhöfer et al. 2014],
avoiding fast and large topology changes [Guo et al. 2017; Innmann
et al. 2016; Newcombe et al. 2015] or relying heavily on online gen-
erated template priors [Zollhöfer et al. 2014]. Multi-camera systems
whilst requiring more costly hardware and setup, have recently
demonstrated incredibly robust performance capture in real-time
[Dou et al. 2016]. In particular, the Fusion4D method [Dou et al.
2016] which is the underlying performance capture technology of
the Holoportation system [Orts-Escolano et al. 2016], has shown
robust reconstructions even under large topological changes and
large frame-to-frame motions.
Despite this, Fusion4D and hence Holoportation, suffers from

many problems as illustrated in Fig. 2 and Fig 18. While the re-
constructions are compelling given real-time performance, there
is a clear lack of geometric detail, in particular over-smoothing
of high frequency details. For example, faces appear extremely
over-smoothed, and once textured the reconstructions exhibit a
clear uncanny feeling. Second, during large motions, Fusion4D fails

considerably. This is less apparent than other template or single
reference volume systems [Guo et al. 2017; Innmann et al. 2016;
Newcombe et al. 2015; Zollhöfer et al. 2014], as the model gracefully
degrades to data only in regions of high alignment error. However,
this effectively means in regions of tracking failure, the reconstruc-
tion is representative of the noisy data only, with loss of temporal
consistency. The issue of tracking failures also relates to Fusion4D’s
handling of topology changes. While the system is clearly robust
to many challenging scenarios with topological changes, it deals
with it through this notion of partially resetting the model in the
areas where topological changes occur. So, for example, in a region
where two interlocked hands separate, the system first resets the
reconstruction in this region, and then rapidly accumulates the
model once the topology change occurs. This again breaks temporal
consistency and falls back to noisier data briefly within this region.

In this paper we address these three challenges of over-smoothing
of geometric details, degradation of quality where fast motions occur,
and handling topological changes by model resetting. To deal with
these issues we must build a new volumetric performance capture
system from the ground-up with the following properties:

• To significantly improve over-smoothing of geometric de-
tails we create a new non-rigid alignment strategy with both
geometric and photometric terms, with learned 3D corre-
spondences predicted using an efficient spectral embedding
technique, and finer scale alignment. This is coupled with a
fusion strategy that can go beyond the resolution of voxel-
only reconstructions with an overlaid geometric detail layer,
and more faithful texturing using a compact embedded atlas.

• To deal with fast motions we create a non-rigid reconstruc-
tion pipeline with 3x the performance of Fusion4D using the
same GPU hardware. This improved speed is due to a faster
matching strategy using a more compact and robust parame-
terization. This is coupled with a novel machine learning tech-
nique for 3D correspondence estimation used to initialize our
frame-to-model alignment avoiding certain frame-to-frame
errors.

• To deal more effectively with topological changes our non-
rigid alignment strategy is composed of both forward and
backward passes using geodesic skinning to extract and re-
fine correspondences for alignment. This allows for far more
effective handling of topological changes than in Fusion4D.

Our system, called Motion2Fusion, runs at almost 100fps using
high-end but consumer-available graphics hardware, works in arbi-
trary challenging scenes with topological changes or large motions
without scene priors, and gracefully degrades from multi-view sce-
narios to single camera reconstructions. Extensive quantitative and
qualitative comparisons show more precise geometric and texturing
results with less artifacts due to fast motions or topology changes
than prior techniques [Dou et al. 2016; Innmann et al. 2016; New-
combe et al. 2015; Zollhöfer et al. 2014].

2 RELATED WORK
Multi-view performance capture has been an active area of research
for decades. We refer the reader to [Theobalt et al. 2010; Ye et al.
2013] for full reviews. The majority of previous works use offline

, Vol. 1, No. 1, Article 246. Publication date: October 2017.

Motion2Fusion: Real-time Volumetric Performance Capture • 246:3

techniques with a focus on very high quality reconstructions, often
requiring all data frames a-priori and considerable compute, making
real-time scenarios prohibitive. The state-of-the-art offline systems
offer incredible temporally consistent results, handling certain topol-
ogy changes and arbitrary scene reconstruction, using active and
passive 2D/3D cameras, chroma keying, and expensive hardware
setups, but at frame rates that are orders of magnitude slower than
real-time [Collet et al. 2015b].
When focusing on real-time methods, techniques either focus

on parametric tracking of human bodies e.g. [Mehta et al. 2017],
hands e.g.[Tan et al. 2016; Taylor et al. 2016] or faces e.g. [Cao et al.
2013; Thies et al. 2016], but often avoid arbitrary non-rigid shape
reconstruction. The work of [Zollhöfer et al. 2014] uses an online
rigidly captured template, which is non-rigidly tracked over time
with a detail layer for accumulating some high frequency details.
The work of [Cao et al. 2015] specializes to an online face model and
shows incredibly detailed reconstructions from only an RGB sensor.
Other works use skeletal priors and template models for impressive
real-time reconstruction of scenes including humans and animals
[Ye and Yang 2014]. These systems however clearly fail when under
significant scene and topology changes, where the template model
becomes inconsistent with the observed data.
DynamicFusion [Newcombe et al. 2015] was one of the first

real-time systems that removed the need for such an explicit tem-
plate prior, using a reference volumetric model that was non-rigidly
warped to each new input frame, with data samples being fused
into the reference over time. However, large topological changes
and more complex motions led to tracking failures. VolumeDeform
[Innmann et al. 2016] extends this general approach of warping
an evolving reference volume over time, adding a color term and
densely computing the warp field across all voxels. The work of
[Guo et al. 2015] extends the notion of geometric and color based
warping of the reference volume by modeling geometry, surface
albedo and appearance. The per-frame non-rigid warp field is com-
puted with an additional low-frequency lighting term that generates
impressive tracking results.
To overcome these limitations of single view real-time systems,

and create a practical performance capture system, Fusion4D [Dou
et al. 2016] focused on real-time multi-view scenarios, with the
notion of key volumes and partial fusion of data and reference
volumes to handle topological changes and tracking failures, and a
learning-based frame-to-frame 2D correspondence field estimation
method [Wang et al. 2016] to handle fast motions. However as
seen in the Fusion4D and Holoportation projects [Dou et al. 2016;
Orts-Escolano et al. 2016], there is significant over-smoothing of
geometric details, degradation of quality where fast motions occur,
and topological changes are handled by a hard reset of the model
within evolving regions.

In the remainder of this paper, we address each of these limi-
tations of related work, and present a new pipeline for real-time
performance capture. Our system does not require a template prior,
removes the over-smoothing inherent in Fusion4D using a more
precise alignment strategy, with finer scale fusion and texturing.
We also support faster motions using an efficient 100fps reconstruc-
tion pipeline with robust correspondence estimation which moves
beyond 2D and frame-to-frame estimation per view seen previously

[Dou et al. 2016; Wang et al. 2016]. Finally, we present a new two-
way non-rigid matching technique for handling topological changes
more gracefully.

3 METHOD
We first describe the high-level components of our new pipeline
as illustrated in Figure 3, which achieves significantly better per-
formance and higher quality than previous real-time performance
capture systems. Our performance capture system takes RGBD im-
ages as input from one or more viewpoints, and generates textured
meshes as output. We use active IR stereo cameras to generate depth
maps at high-speeds of 200fps [Fanello et al. 2017a,b] with additional
color data. As in [Dou et al. 2016] we maintain both a data volume
and evolving key (or reference) volume.

The core of our system solves for the non-rigid alignment param-
eters that warp the mesh at the key volume to the data frames. The
accuracy of this alignment typically suffers from two major chal-
lenging scenarios: fast motions and surface topology changes. We
extend current non-rigid matching work to handle both cases. To
tackle tracking failures caused by fast motion, first we significantly
improve the alignment frame rate by simplifying the non-rigid pa-
rameterization and improving the performance of the non-linear
solve (see Sec. 3.2) . We can align full-body captures at 100+fps and
upper-body captures at 200+fps. At such an unprecedented frame
rate the motion between adjacent input frames is reduced. In most
cases initializing the alignment parameters with the values from
the previous frame causes the non-linear solver to converge much
faster at this frame rate (see Sec. 4).
To further increase the alignment reliability, we learn a spectral

embedding to predict the 3D correspondences between the refer-
ence mesh and the data mesh (see Sec. 3.1). These correspondences
provide strong constraints that speed up the convergence further
even if the initialization was poor due to fast motion. Additionally,
we use a dense color term in the optimization to penalize any mis-
match between the mesh colors and the input RGB data, effectively
dealing with drift in areas with finer geometry e.g, faces (see Sec.
3.2.2). To better deal with surface topology changes and finer scale
alignment, we run both forward matching (reference to data) and
backward matching (data to reference) to find the dense correspon-
dences between the reference and data, which are then used in the
residuals during the final non-rigid optimization (see Sec. 3.2.1).

After the reference is aligned with the data, we fuse the data into
the reference volume and also warp the reference to the data in
order to generate a high fidelity output. We maintain a Truncated
Signed Distance Function (TSDF) volume [Curless and Levoy 1996]
at the reference for volumetric fusion (see Sec. 3.4). In addition
to a TSDF value at each voxel, we also store the voxel color. For
memory and computational efficiency, the volume is based on a
two level hierarchy. Marching cubes is used to extract a triangle
mesh with per-vertex color from the volume.With this approach our
voxel resolutions are approximately limited to 5mm at frame-rate,
however, we further fuse high frequency details using a novel 2D
fusion step (see Sec. 3.4) which allows a finer scale 2D geometric
displacement map to be encoded on-top of the coarser mesh.

, Vol. 1, No. 1, Article 246. Publication date: October 2017.

246:4 • Dou et al.

Fig. 3. System Pipeline. We first compute RGBD frames from one or more sensors. We maintain both a data volume and an evolving key (or reference) volume. First
a correspondence field from the data to the key volume is estimated using a learned approximation of a spectral embedding of the extracted points. This is used to
initialize a first phase non-rigid matching performed bidirectionally between reference and model to refine the dense correspondence field. These correspondences are
then used as residuals in the final non-rigid matching phase, after which the data is fused with the model encoding the overall shape. Afterwards the high frequency
details and the texture mapping are incorporated.

Fig. 4. Spectral Embedding Algorithm. Starting from an input mesh the
affinity matrix of the vertices is computed. The spectral analysis of the graph
provides a new space which is robust to non-rigid transformations.

Finally, we rasterize the output mesh triangles onto a plane and
blend in the colors from the input. The generated atlas is UVmapped
to the mesh geometry and a high fidelity reconstruction is rendered.
Our system is capable of running at 100fps on a single GPU, in com-
parison to Fusion4D or Holoportation [Orts-Escolano et al. 2016]
that required two GPUs and ran at 30fps with the exact same Nvidia
Titan X hardware.

3.1 Learning the Spectral Embedding
While our system tracks at high frame-rates, relying purely on
the previous frame can result in tracking failures, to address this
we find model-to-data 3D correspondences using a novel learned
spectral embedding approach, which provides strong constraints at
later nonrigid matching stage (Section 3.2). This approach contrasts
greatly from Fusion4D and Holoportation [Dou et al. 2016; Orts-
Escolano et al. 2016], where the focus is on finding image patch
correspondences [Bailer et al. 2015; Fischer et al. 2015; Wang et al.
2016; Zagoruyko and Komodakis 2015; Žbontar and LeCun 2015]
from one viewpoint, and frame-to-frame only. With these 2D tech-
niques their generalization to 3D space is not straightforward. This
ultimately means that the correspondence estimation in Fusion4D
suffers from frame-to-frame drift, occlusions due to each viewpoint
being independently computed, and other projective errors. We
instead learn to find correspondences directly between 3D meshes.
Recently, deep 3D shape descriptors have been also proposed [Xie

et al. 2015], but they cannot be used to find precise correspondences
due to computational requirements, also their application is mostly
limited to full shape retrieval rather than keypoints detection. An
orthogonal trend is to consider 3D meshes in a graph representation
and perform matching in this domain. A lot of computer vision ef-
forts [Leordeanu et al. 2009; Zaslavskiy et al. 2009; Zhou and la Torre
2012] focus on solving this hard optimization problem leading to
solutions that are not feasible in real-time and in general do not
cope well with non-rigid deformations.
Our work borrows from the spectral embedding literature [Jain

and Zhang 2006], where the general idea is to remap a 3D mesh into
a new domain which gives a high degree of invariance to non-rigid
deformations. Finding correspondences in this new space becomes
a more tractable problem and they can be used as initialization
for the rest of the pipeline. Specifically our approach starts from
the input mesh (or 3D point cloud) and builds an affinity matrix
A = exp(− D2

2σ 2) for every node (3D point) in the graph (mesh).
The affinity matrix encodes the similarity of every node in the
graph based on their distances D, which approximates a Kernel
function to encode non-linearities in the data. It has been shown
that when the Geodesic distance is used, the spectral analysis of the
affinity matrix is very robust to non-rigid transformation [Jain and
Zhang 2006]. The affinity matrix A is then decomposed using the
SVD decomposition in A = USVT and the first k − 1 eigenvectors
u2, . . . , uk are used as new space where correspondences search
becomes easier1. In Fig. 4 we depict the whole pipeline. Notably, the
output space does not change when the subject drastically changes
her pose. The main limitation of this approach is the computational
cost to build the affinity matrix and perform the SVD decomposition.
Although approximated solution exists [Woolfe et al. 2008], they
still exceed our computational budget; moreover this method does
not handle topology changes.

1Note we discard the first eigenvector which is associated with the eigenvalue 0 and is
a constant vector.

, Vol. 1, No. 1, Article 246. Publication date: October 2017.

Motion2Fusion: Real-time Volumetric Performance Capture • 246:5

Fig. 5. Sparse Correspondences via Learned Spectral Embedding. We visu-
alize the correspondences and the alignment error obtained using our learning
method.

Our idea is to learn to approximate the embedded points starting
from a set of 3D points X ∈ Rn×3 representing the vertices of the
current mesh. Indeed, from a machine learning perspective, we can
relate the affinity matrix A to a non-linear mapping of our input
space, similar to a Kernel function. The embedded space therefore
can be seen as target output that we want to approximate efficiently,
avoiding the explicit computation of the affinity matrix and its
SVD decomposition. In this setting we can cast the problem as a
regression task. In particular, given the set of 3D vertices X ∈ Rn×3

we want to learn a function f (X) = Y ∈ Rk×n , where Y are the first
k eigenvectors of the affinity matrix A. This allows us to avoid both
building the matrix A and performing its SVD decomposition.
Ideally, to keep low the amount of computation required, we

would employ a simple linear model of the form f (X) = Y = XW,
where W are the model parameters. However, as discussed above,
the mapping from X to the embedded space Y is strongly non-
linear, due to the presence of the affinity matrix A and its SVD
decomposition. To deal with such non-linearities we first have to
use a non-linear mapping ϕ(X) ∈ Rn×F , which remaps the data to a
higher dimensional space. In detail, we want to learn a non-linear
mapping ϕ(X) of the point cloud and a regression function W that
minimizes the loss:

arg min
W

L(ϕ(X) W,Y) + Γ(W) (1)

where Y ∈ Rk×n is our embedded space and Γ(W) is a regulariza-
tion term to avoid overfitting, which we set to be the ℓ2-norm of W.
The non-linearity ϕ is crucial to learn such a complex space and, as
discussed, the typical approach is to compute the affinity (Kernel)
matrix A of the data. Since our goal is indeed to avoid such com-
putation, we choose to approximate the Kernel matrix via random
features [Rahimi and Recht 2007] and set ϕ(X) = exp(i XF1

σf
), where

F1 ∈ R3×F is randomly generated from a Gaussian distribution.
Applying any learned function directly to a point cloud is not

trivial since it strongly depends on the order of the points and their

arrangement in the space. Therefore we take inspiration from [Qi
et al. 2016] and we use the concept of spatial pooling [Lazebnik
et al. 2006] to summarize the whole point cloud and capture both
global and local structures. In particular we perform an additional
non-linear mapping Ψ = exp(i XF2

σf
) and compute its max-pooling

over all the points n to obtain a single compact descriptor ψ =
maxiΨi ∈ RF where we set the same number of random features F .
In order to catch both local and global information for each point x
in the pointcloud X we aggregate the descriptors ϕ(x) andψ with
a simple subtraction Φ = ϕ(x) − ψ . Other forms of aggregation
such as concatenation or max are possible, but we did not find any
substantial difference.
TrainingTime.At training time, we collect point cloudsX1, . . .XN ,
which we randomly subsample 256 points from each point cloud.
Each point cloud is a particular subject performing a particular pose.
We compute the embedded space Y1, . . .YN using the slow offline
process proposed in [Jain and Zhang 2006]. Then we remap the
input point clouds to Φ1, . . . ,ΦN and we minimize the following
loss function:

arg min
W

∑
i

∥Yi − ΦiW∥2 + λ∥W∥2 (2)

This is a standard least-squares problem and it can be solved in close
form with respect to the variables W.
Runtime.At run time, given twomeshesM1 andM2 we randomly
subsample them to 256 3D coordinates X1 and X2, we compute their
non-linear mappings Φ1 and Φ2 and generate the embedded spaces
Y1 = Φ1W and Y2 = Φ2W. In this new space, which is robust
to non-rigid deformation, we perform a simple rigid alignment to
retrieve the correspondences and use these in the rest of the pipeline
for the initialization of the correspondence field. See Figure 5 for a
visualization of the final learned correspondences.

3.2 Non-rigid Alignment
Similar to recent work [Dou et al. 2016; Li et al. 2009, 2013; New-
combe et al. 2015], we use an embedded deformation (ED) graph-
based method for non-rigid matching [Sumner et al. 2007]. Given a
reference mesh, ED nodes are uniformly sampled from the vertices.
We represent the i-th node location as gi. Additionally, an ED node
is associated with a set of parameters that represent the deformation
it imposes in its local neighborhood. Neighboring ED nodes are con-
nected together to form an ED graph, and we useG to collectively
represent the deformation parameters and ED node locations on
the ED graph. Each mesh vertex is “skinned” to K neighboring ED
nodes (with K = 4 in our experiments), so that the mesh would be
deformed according to the given parameters of an ED graph.

The task of non-rigid matching is to find the ED graph parameters
that “perfectly” deform the reference mesh to fit the data. This
is achieved by solving an energy minimization problem with the
Levenberg-Marquardt (LM) algorithm. Our energy function is a
combination of data terms and regularization terms. For the data
terms, we penalize geometry misalignments, color inconsistencies,
visual hull violations [Dou et al. 2016], and sparse correspondences
disagreement (from Sec. 3.1). For the regularization terms, we added
a smoothness term to enforce that two connected ED nodes having

, Vol. 1, No. 1, Article 246. Publication date: October 2017.

246:6 • Dou et al.

similar parameters. We also constrain the local deformation at each
ED node to be as rigid as possible to minimize distortion. At each LM
step, the Hessian approximation matrix JT J and first order gradient
JT f are evaluated from the energy terms, where J is the Jacobian
matrix of all residuals f . An update vector h on ED parameters is
solved from the normal equation (JT J +λI)h = −JTf . JT J is a sparse
block matrix, and we solve the normal equation with a PCG method
optimized for the block structure of JT .
ED Parameterization. The deformation at each ED node can be
parameterized as an affine transformation which has 12 param-
eters (a 3 × 3 matrix A together with a 3D vector t). Using Lin-
ear Blend Skinning (LBS), the transformation applied to warp a
vertex v at the reference to ṽ at the target is denoted by ṽ(G) =∑K
k=1wi (Ak (v− gk)+ gk + tk). Practically, a regularization is added

on A as a soft constraint to enforce it as close to rotation matrix
as possible. In DynamicFusion [Newcombe et al. 2015], A is forced
to be a rotation matrix by parameterizing the deformation at each
ED node as a dual quaternion, and approximate Dual Quaternion
Blending (DQB) [Kavan et al. 2007] is instead used in the warp
function. Compared with linear blending of rigid deformations, dual
quaternion blending avoids mesh collapse artifacts, at the cost of
more expensive compute.

In this paper, we represent A as a quaternion q without explicitly
forcing q to be unitary, instead we treat ∥q∥ = 1 as a soft constraint.
Essentially, this semi-rigid parameterization is a trade-off between
a full affine deformation (12-DOF) and a rigid deformation (6-DOF)
by adding a uniform scale factor in addition to the rigid parameters,
resulting in a 7-DOF transformation per ED node. To warp a vertex
v, we perform:

ṽ(G) =
∑
k

wi (R(qk)(v − gk) + gk + tk), (3)

where R(·) converts a quaternion to a rotation matrix. Since we
do not explicitly force q to be unitary, R(q) becomes a rotation
matrix multiplied by a scalar. Note that we use linear blending
instead of quaternion blending. This is partially to stay within our
computational budget and maintain a very high frame rate, but also,
in practice the mesh collapse artifacts associated with LBS were not
an issue due to the high frame rate we maintain.

Compared with a full affine parameterization the semi-rigid rep-
resentation is computationally more efficient at both the evaluation
of JT J and later during the optimization. The block size of the
sparse block matrix JT J is 7 × 7, so roughly only one third of the
compute and memory operations is required compared with the
12 × 12 block matrix in the affine parameterization case. Also the
CUDA implementation needs less shared memory and can achieve
higher kernel occupancy. Overall, in our implementation, this lead
to a 4x performance improvement compared to recent work like
Fusion4D [Dou et al. 2016]. Unlike the dual-quaternion parameter-
ization in DynamicFusion [Newcombe et al. 2015], each ED node
“rotates” vertex v around its location g, which makes the optimiza-
tion problem numerically more stable. Also, no singularity point
exists in quaternion space, while the underlying Rodriguez rotation
vector would suffer from the singularity problem requiring the delta
technique to handle the issue [Newcombe et al. 2015].

Fig. 6. Two-way Non-rigid Matching. Forward matching would fail when
aligning a reference mesh with closed topology to a data mesh with open
topology. Our two-way matching approach properly handles this case.

3.2.1 Two-Way Non-rigid Matching . One failure case for the
approach detailed so far is surface topology changes. As illustrated
in Figure 6, the ED graph-based alignment will not have any issues
aligning a reference surface with open topology to data with closed
topology (i.e, surface merging), but it will fail the other way around
(i.e, surface splitting). This is due to both the vertex-to-node skin-
ning data term and the node-to-node connectivity regularization
term. By construction, there are no semantic labels associated with
either the ED nodes or the vertices. That means that a vertex is
inevitably skinned to whichever ED nodes fall within its local neigh-
borhood. For instance, when a hand touches the face, vertices on the
face can be partially skinned to ED nodes on the hand. Moreover,
face ED nodes and hand ED nodes might be connected through
regularization terms. However, this does not occur when the mesh
has an open topology to begin with.

The above observation leads us to develop a novel two-way non-
rigid matching strategy. We run both forward matching, aligning
the reference to the data and then backward matching, aligning the
data to the reference. From this two phase alignment we identify the
best point-to-point correspondences between reference and data,
which are then used for the final high fidelity non-rigid matching.
Initial Forward Matching.We start by matching the reference to
the data. As in Fusion4D [Dou et al. 2016; Newcombe et al. 2015],
the data term we use to measure the misalignment between the
reference mesh and the input depth maps using the projective point-
to-plane distance:

Edata(G) =
∑
m

∑
n
δmn ñT (ṽm − Γn (ṽm)), (4)

where ṽ is the warped vertex as defined in Equation 3;m and n are
the indices of the vertex and the depth map respectively, and Γn (v)
represents the corresponding projective 3D point of v from the n-th
depth map. δmn represents the visibility test for ṽm where δmn = 1
if it is visible in the n-th depth map, and δmn = 0 otherwise. We
additionally integrate the visual hull term [Dou et al. 2016] and the
learned correspondence term from Sec. 3.1. To deal with drift we
add a color term as well (see Sec. 3.2.2).

, Vol. 1, No. 1, Article 246. Publication date: October 2017.

Motion2Fusion: Real-time Volumetric Performance Capture • 246:7

After the forward alignment is established, we pair each vertex
vm on the reference surface with its corresponding point pfwdm on
the data mesh (volumetrically fused from the input depth maps).
We let pfwdm denote the closest surface point of ṽm , and we discard a
corresponding pair if their distance is greater than 2mm. This step
culminates in a correspondence set {(vm, pfwdm)}.
Backward Matching. After the forward matching, we use Equa-
tion 3 to warp the ED nodes of the reference to the data pose
(g → g + t). We then update the node-node connectivity based
on the mesh topology at the data. The updated ED graph is then
used for the backwardmatching, where we find the correspondences
on the data for all reference vertices: {(vm, pbwd

m)}. The key here
is to re-use the ED graph instead of resampling a new ED graph
from the data mesh. This way we preserve the correct ED node
connectivity during the alignment of a reference mesh with open
topology to input data with closed topology, where the ED graph
from the reference would have the right connectivity while the
resampled ED graph at the data would have the wrong one. Instead
of aligning a mesh to depth maps and color images as we did in the
forward matching, we align the data mesh to the reference TSDF
volume V(·), therefore the data term measuring the misalignment
has a different formula:

Etsdf(G) =
∑
m

|V̄(ṽ)|2. (5)

where V(·) only defines the signed distance values at fixed regu-
lar lattice points, while V̄(·) is a continuous volume field sampled
through the trilinear interpolation of V(·) at any given point. The
parameters at each ED node for the backward matching are ini-
tialized as the inverse of the forward transformation at that node:
qbwd = q−1 and tbwd = −t.
Final Matching. After forward and backward matching, we have
two sets of dense correspondences. A vetex on the reference mesh
might have one correspondence from forward matching and one
from backward matching. We pick the best correspondence (clos-
est) for a reference vertex (if any exists): {(vm, pm)}. If the forward
correspondence is chosen for a reference vertex v we conclude that
this vertex has a reliable correspondence at the data given the ref-
erence mesh topology. However, if the backward correspondence
is chosen for v, we then update its skinning results (both ED node
set and weights) to match the topology at the data. We perform
the final matching to align the reference to the data with the up-
dated graph connectivity and vertex skinning, using the extracted
correspondences as residuals:

Ecorr =
∑
m

∥ṽm − pm ∥2 (6)

Two-way no-nrigid matching has two additional matching oper-
ations compared to the standard forward matching, but both back-
ward matching and the final matching are computationally light-
weight due to simplified energy function with good (in some case
perfect) initialization from previous steps.

3.2.2 Color Term. The point-to-plane-distance data term used
in the forward matching does not constrain a vertex’s movement
along the tangent plane, leading to drift when the surfaces have

Fig. 7. Color term. When geometry lacks details giving rise to ambiguity,
matching can fail. Incorporating a color term ameliorates this issue.

finer geometry or lack geometric features altogether (see figure
7). To handle drift we add an energy term to measure the photo-
consistency between per-vertex colors on the reference mesh and
the observed color for the mesh vertices from the input color images
{In }Nn=1. This new term is formulated as:

Eclr =
∑
m

∑
n
δmn ∥In (Πn (ṽm)) − cm)∥2, (7)

where Πn (ṽ) projects the warped reference vertex projected to the
n-th color image space (2D image coordinate), δmn is the visibility
term as in Equation 4, and cm represents the 3D color vector of
them-th vertex on the reference mesh. In practice, we found that
collapsing the 3D color into a single intensity (grayscale) value
barely degrades the alignment quality but dramatically reduces the
computation requirement for the JT J evaluation. To further reduce
the compute we collapse multiple residuals on the same vertex into
one, incorporating instead the residuals:

Eclr =
∑
m

(∑
n

wmn Īn(Πn (ṽm)) − c̄m)

)2

, (8)

where Ī is an input intensity image and c̄ is the per-vertex intensity
value, andwmn is the weight on each input viewwhere

∑
n wmn = 1.

The weightwmn takes into account visibility and viewing angle.

3.3 Skinning
From Equation 3 we see that a vertex v is warped using a set of
transformations qk and tk. Under the same real-time constraints
previous work opted to use the k-nearest ED nodes [Dou et al. 2016;
Newcombe et al. 2015]. This was done by simply searching a small
set of neighbors that lie in the same 3D space partition [Dou et al.
2016]. This approach completely ignores the topology of the shape,
assigning vertices to nodes that are close in Euclidean space but
very far on the mesh manifold. This results in artifacts that cause
the mesh to stretch and distort counter-intuitively during non-rigid
alignment.

A more principled approach is to choose the closest ED nodes to
that vertex on the mesh manifold, replacing the Euclidean distance
with the geodesic distance. This can be shown to avoid the deforma-
tion artifacts but at the expense of expensive computation [Li et al.
2009]. We address this issue using a extremely fast approximation
for geodesic skinning. We first find the nearest ED nodes to each ver-
tex using the Euclidean distance [Dou et al. 2016]. For each ED node
we then solve for the heat equilibrium over the surface, where the

, Vol. 1, No. 1, Article 246. Publication date: October 2017.

246:8 • Dou et al.

Fig. 8. The Space Compression Problem and the Double Surface Artifact.
Both the red voxels on the face and the blue voxels around the hand will project
onto the same sets of depth pixels (face pixels) after warping, so the face would
be fused into both areas, causing the double surface artifact.

heat is transferred from the ED node to only the vertices to which
this node was selected as one of its k-nearest ED nodes [Baran and
Popović 2007]. This culminates in solving the linear system for ED
node i:

(D − t∆)wi = δi , (9)
where D is a diagonal matrix where Dii is the area of vertex i
(one third the area of all the triangles incident on vertex i), ∆ is
the discrete surface Laplacian calculated using the cotangent for-
mula [Meyer et al. 2002] and using a half-edge data structure for
the intermediate representation, t is a temperature hyperparameter,
and δi is a one-hot vector indicating the vertex that represents the
ED node. This also led us to sample ED nodes on the mesh manifold
by choosing an ED node as the medoid of a set of vertices instead
of the centroid as in previous work.

The resulting linear systems are small and independent. We pro-
ceed to solve them in parallel with a custom Gauss-Seidel imple-
mentation. When the recovered solution wi j is zero for a vertex
j, it is then determined to be too distant on the manifold and is
subsequently detached from ED node i , effectively avoiding most
distortion artifacts. We only apply this strategy to mesh surface
warping. To stay within computational budget we still employ the
Euclidean distance during volume warping. The details are in the
next section.

3.4 Data Fusion and Detail Layer
We employ the idea of key frames, in a strategy similar to [Collet
et al. 2015a; Dou et al. 2016], to increase the overall robustness of
the data fusion. Initially we set the first frame as the key frame,
and we perform non-rigid alignment between the key frame and
the new data frame, so that data can be fused into the key frame.
When the alignment error is past a threshold at a data frame, we
set this data frame as the new key frame. We use a TSDF volume as
the underlying data structure for fusion [Curless and Levoy 1996;
Newcombe et al. 2011]. In addition to fusion at the key frame, where
data is fused into the key volume Vk , the key volume is also se-
lectively warped to the data pose according to the alignment error

and blended with the live data. We will detail the novel parts of
our volumetric fusion and volume warp algorithm in the following
sections.

Volume operations are expensive both computationally andmemory-
wise, so we cannot afford a volume with a prohibitively high voxel
resolution. In our experiments we set the voxel resolution to 5mm.
To preserve the finer geometric details we also maintain a light-
weight 2.5D volume in the depth map space. The details from the
2.5D volume are superimposed on the the mesh extracted from the
regular volume.
Key Volume Fusion and Space Compression. Using the (for-
ward) warp function (Equation 3) we can transform and then fuse
the input depth maps from the current data frame into the key vol-
ume. Each voxel x of the key volume is first warped to the data pose
x̃, and then x̃ is projected to each depth map to pick up a depth
value. The depth value is then “fused” by updating the TSDF value
at x [Curless and Levoy 1996]. In the non-rigid case voxels from
one surface could end up warped towards another surface that is
sufficiently close, resulting in the space between the two surfaces
to be compressed (see Figure 8). Depth pixels corresponding to one
surface could then be erroneously selected by voxels from both
surfaces, causing the “double surface” artifact. We refer to this issue
as the “space compression” problem. Since this additional phantom
surface tends to show up at some distance away from the real sur-
face, this problem can be mitigated by adjusting the weight of a new
TSDF value according to its distance to the surface, so that TSDF
values corresponding to the phantom surface are suppressed by the
existing TSDF values in the key volume. However, this does not
fully resolve the problem, as the “double” surface will eventually
appear if the two surfaces stay at this pose for a long enough time.
This space compression problem can be solved by updating the

TSDF value of voxel x if and only if the depth pixel that x̃ projects to
is coming from the same surface. Intuitively, surface points from the
same neighborhood should be skinned to a similar set of ED nodes
with similar weights. Thus, given two points and their skinned ED
nodes and skinning weights: {Ik ,w I

k }
K
k=1 and {Jk ,w

J
k }

K
k=1, we can

assume they come from the same surface if:∑
i

∑
j
δ (Ii , Jj)min(w I

i ,w
J
j) > C, (10)

where δ (Ii , Jj) = 1 if Ii = Ij and δ (Ii , Jj) = 0 otherwise. We set the
threshold C = 0.8 in our experiments.

Voxels of the key volume can be trivially skinned to their closest
ED nodes in the Euclidean sense. However, depth pixels of the data
frame cannot be directly skinned to the ED nodes at the reference
pose. Warping ED nodes to the data pose first before skinning depth
pixels to them is also problematic, because the association between
a point to an ED node could change if the pose changes. Thus, a
surface point on a face could be skinned to ED nodes on a hand
when that hand touches the face. Instead, we warp the mesh of
the key frame (key mesh) to the data pose (for only vertices with
high alignment scores), and project the warped mesh to the depth
maps. We assume that a depth pixel with depth d is associated with
a surface point v if the warped ṽ projects onto the pixel and the
depth difference between the projected value and the pixel value

, Vol. 1, No. 1, Article 246. Publication date: October 2017.

Motion2Fusion: Real-time Volumetric Performance Capture • 246:9

is smaller than 10mm. We then skin the depth pixel to the same
ED nodes with the same weights as its associated surface point. If
we cannot find a corresponding surface point for a depth pixel, we
skin it directly to the warped ED nodes. With both voxel v and the
depth pixel that ṽ falls onto are skinned to ED nodes properly, we
use Equation 10 to test if the depth pixel can be fused into voxel v.
Volume Warp and Collision Detection As introduced in Sec-
tion 3.2.1, the final warp function would warp the key volume to-
wards the data. Voxels in the key volume sit on regular lattice grid
points, but after the forward warp, we need to re-sample the TSDF
values and weights at the non-uniform lattice grid of the data vol-
ume. Also, we need to handle the voxel collision problem since
voxels corresponding to different surface parts might be warped to
the same location. Instead of treating each voxel individually, we
apply the warp function to each volumetric cube (with eight voxels
at its corners) on the lattice grid. After warping, the eight voxels
can also become non-cuboid. We discard cubes that are distorted
dramatically and assume the rest approximately have the shape of
a cuboid. We then perform a rasterization process on each warped
cuboid to detect all the lattice points of the data volume that sit
inside it. We trilinearly interpolate the TSDF value and weight for
each lattice point.
A data voxel can get TSDF values from multiple cubes when

a collision happens. This can be handled with a custom atomic
operation in our implementation. When we write a new TSDF value
dnew to a voxel with an old TSDF value dold, we set d = dnew if
either dold is invalid or |dnew | < |dold |; and set d = dold otherwise.
Detail Layer. In addition to the regular voxel grid with 5mm reso-
lution, we also use a finer fusion step that captures higher frequency
geometric details. Unlike the regular volume, the finer grid lives
in the depth map space. At each grid point (i.e., depth pixel), there
are multiple voxels distributed along the view ray going through
the grid point, and these voxels locate around a point with depth
value d̄ , representing the depth uncertainty around d̄ , where d̄ is
determined by projecting the mesh from the regular volume to the
depth map. As in TSDF regular volume, each voxel here also has a
TSDF value and a weight. This 2.5D volume preserves all the data
that is encapsulated in the input depth maps as the grid has the
same spatial resolution as the incoming depth map. We use a higher
resolution along the viewing ray (depth difference between adjacent
voxels along the viewing rays) and set it to 2mm in our implemen-
tation. Figure 9(top) shows the locations of the voxels (in green) of
one line of depth pixels in 3D space. The results at the bottom of
the figure illustrate the details we recover. Note fine details like the
bump from the lettering on the t-shirt and the jacket pocket; both
are over-smoothed when the detail layer is not used.
The volume operation on this 2.5D volume is efficient. First, all

voxels at the same grid point have the same skinning parameters, so
the warping operation is computationally cheap. Second, marching
cubes on this volume is as trivial as finding the zero crossings at
each pixel since the pixel connectivity is a simple 4-way grid.

3.5 Atlas Mapping
With a higher detailed model, a new method for texturing is also
desired. We have access to the per-vertex colors that we use to aid in

Fig. 9. Detail Layer.We build a 2.5D volume to capture the high frequency
details that can be lost during the matching process (top). Incorporating these
details recovers subtle features (e.g, lettering on the t-shirt, jacket pocket) and
produces a higher fidelity output.

tracking fine details, which prior work used in the final output [Dou
et al. 2016]. However, tying the color sampling to the geometry
resolution gives rise to an unfavorable trade-offs. On the one hand,
increasing the voxel resolution to improve the color fidelity signifi-
cantly slows down our pipeline and increases its memory footprint,
and on the other hand lowering the color sampling resolution pro-
duces blurred results.
It became clear that generating an atlas map would avoid this

trade-off. The literature on atlas mapping is vast. To enable pla-
nar embedding, a surface has to be first either cut through a seam
(e.g, [Sheffer and Hart 2002]) or segmented into charts (e.g, [Zhou
et al. 2004]). After applying one or more cuts, one can construct
a parameterization to map the “flat” mesh segments onto a plane,
minimizing angle distortions (e.g, [Lévy et al. 2002]), distance dis-
tortions (e.g, [Sander et al. 2001]), or any other distortion metric.
The unwrapped charts have to additionally be packed into a single
rectangular atlas image.
To stay within our computational budget we chose to construct

a simple per-triangle atlas map. This decouples color fidelity and
geometry resolution without sacrificing the frame rate. Inspired
by [Soucy et al. 1996], we construct a half-pixel corrected triangular
atlas, where triangles are independently paired (back to back) and
mapped onto a fixed size square region. Additionally, by further
contracting the triangles by a half-pixel we can support bilinear
interpolation of the atlas texels in OpenGL without any bleeding
artifacts [Carr and Hart 2002]. Figure 10 compares rendering with

, Vol. 1, No. 1, Article 246. Publication date: October 2017.

246:10 • Dou et al.

Fig. 10. Per-vertex Color Compared to Atlas Mapping.With the voxel res-
olution fixed, per-vertex colors look blurred and suffer from block artifacts.
Increasing the voxel resolution to alleviate this issue is computationally ineffi-
cient. On the other hand, atlas mapping decouples geometry resolution from
color quality.

per-vertex colors and with our atlas mapping approach at the same
geometry resolution. It is apparent that the atlas preserves more
details whereas the per-vertex texturing results in over smoothing.

Finally, the triangle pixels are projected to the input images and
the color across all inputs is blended in. The colors are weighted
according to the surface normal and the camera viewpoint direction,
favoring frontal views. Note we build the atlas individually for each
frame, but we do fuse color temporally into the volume, which gives
per-vertex color on the output mesh. Per-vertex color serves two
purposes: provides additional constraints for the nonrigid matching
in Section 3.2.2 and helps to fill up the texture at the regions blocked
from all color cameras.

4 RESULTS
In the following, we show qualitative results of our methods as well
as qualitative and quantitative comparisons to related work.

4.1 Implementation deatails and performance
Motion2Fusion runs on a single GPU (Nvidia Titan X). We elimi-
nated host-device synchronization by using multiple streams and
a buffering strategy to maximize the GPU utilization. The system
performance largely depends on the volume of the captured object.
On average, here is the computation breakdown of each system
component for single person full-body capture with eight views:
~1.5ms for preprocessing (e.g., compute normal map, visual hull, and
sparse correspondences), ~5ms for nonrigid alignments (3 iterations
for forwards matching, and 2 iterations for the backward and final
matching respectively), ~3.0ms for data fusion (fusion at key vol-
ume, volume warp, etc), ~0.6ms for atlas calculation. Note that some
expensive operations (e.g., volume warp, marching cubes on data
volume, building atlas) only need to run at the display rendering
framerate (60 fps in our case), thus the overall system performance

is further improved. On average, for single person eight-view full-
body capture, the system runs at around 100 fps, while we achieve
200 fps for upper-body capture with a single person and a single
view.

4.2 Qualitative results
We captured a series of live multi-view captures to show the high
quality of our reconstruction pipeline. All sequences were captured
live in real-time, with our full pipeline (including depth estima-
tion and non-rigid reconstruction) running at around 100 Hz. We
captured many diverse, challenging sequences including people in-
teracting and deforming objects, topology changes and fast motions.
Figure 17 shows multiple examples that demonstrate the high level
of detail in the reconstruction obtained using Motion2Fusion, that
is lacking in other systems.

4.3 Comparisons
Qualitative comparisons. In the remainder of this section, we
compare Motion2Fusion to a variety of state-of-the-art real-time
non-rigid reconstruction/tracking methods, which include our reim-
plementations of DynamicFusion ([Newcombe et al. 2015]), Vol-
umeDeform ([Innmann et al. 2016]), Template tracking ([Zollhöfer
et al. 2014]) and Fusion4D ([Dou et al. 2016]). We compare the
different approaches using standard single camera datasets made
available by [Newcombe et al. 2015] and [Innmann et al. 2016] in
Figure 11. Similar to the work by [Collet et al. 2015a] and [Dou et al.
2016] we build a systemmade up of 8 sensors bars that are uniformly
placed in a room and calibrated with respect to each other. Each
sensor bar provides as output real-time depth maps aligned with
color at high frame rates leveraging recent work in high speed depth
computation ([Fanello et al. 2017a,b]) that is capable of producing
depth maps at speeds as high as 200fps in our setup. We capture a
wide array of challenging yet casual non-rigid sequences and use
this data to compare our approach with the other approaches in
Figure 18.

The prominent failure cases seen in case of prior works fall into
two main categories: tracking failures and oversmoothing as shown
in Figure 11. In case of complex motions and topology changes
approaches that exploit a single fusion volume ([Newcombe et al.
2015]) or tracking a template model ([Zollhöfer et al. 2014]) or
densely deform the volume at every voxel ([Innmann et al. 2016])
often break in case of challenging scenes such as topology changes
and fast motion, due to tracking failures, which are hard to recover
from. We qualitatively demonstrate the efficacy of our proposed
formulation in handing these challenges in Figure 11. In case of
multi-view data, while the data is more complete, these prior ap-
proaches cannot handle topology changes that are prominent in
casual motion capture resulting in failures that is clearly observed in
Figure 18. Motion2Fusion is however robust to this, and maintains
higher fidelity in the final reconstruction.
Fusion4D ([Dou et al. 2016]) tried to address a number of these

problems however their approach fails to recover details in the
reconstruction, and often breaks in case of fast motion as was ob-
served in Figure 2. We qualitatively compare Motion2Fusion against
our re-implementation of Fusion4D ([Dou et al. 2016]). Note in

, Vol. 1, No. 1, Article 246. Publication date: October 2017.

Motion2Fusion: Real-time Volumetric Performance Capture • 246:11

Fig. 11. Comparisons to previous real-time single RGBD systems.We show a comparison of our work to reimplementations of previous work on public/author
provided datasets. These datasets are optimized for single view non-rigid reconstructions, and hence avoid complex motions. Our system is comparable to these RGBD
systems, and avoid the over-smoothing in the model as observed by Fusion4D (e.g, [Dou et al. 2016]). This is encouraging given our system is optimized for multi-view
scenarios where there are fast motions and topology changes but less occlusions.

Fig. 12. Fast Motion Comparison. At 30fps there are clear reconstruction
artifacts on the arms of the user observed (1st row - our system running at
30fps without using sparse correpondences). At 100fps, most artifacts disappear
(2nd row - our system running at 100fps without using sparse correspondences),
and the learned sparse correspondences further improve the tracking quality
(3rd row - our system running at 100fps with sparse correspondences).

Figure 11 the high level of geometric detail we achieve in our re-
construction that is lacking in the Fusion4D result. Further, note
the higher level of texture quality due to the use of an atlas which
is specifically noticeable when zooming to the face and which is
important in virtual and augmented reality telepresence scenarios

Fig. 13. Ground Truth Error Comparison to Other Approaches. The mean
error reported by our real-time system on the dateset of [Collet et al. 2015a] is
on par with the state-of-the-art offline methods.

such as in [Orts-Escolano et al. 2016]. The oversmoothing results
in smoothed detail and also results in inaccurate reconstructions in
case of topology changes such as the ball being thrown from the
hand as shown in Figure 18. We can also see that Fusion4D breaks
in case of very fast motions such as the baseball bat shown in Figure
18 whereas Motion2Fusion faster non-rigid pipeline coupled with
correspondence estimation and is capable of processing three times
the amount of data and maintains the fidelity of fast motion and
important details in the reconstruction.

Quantitative comparisons. We perform quantitative comparison
across prior approaches using the dataset of [Collet et al. 2015a]
similar to the comparison provided by [Dou et al. 2016]. In Figure
13 we show the mean error against the ground truth mesh for sev-
eral prior approaches. In particular, we show that the fidelity of
Motion2Fusion is comparable to offline simplification procedures
while avoiding the tracking failures of [Newcombe et al. 2015]. The
results reported for [Collet et al. 2015a] are those of the tracked

, Vol. 1, No. 1, Article 246. Publication date: October 2017.

246:12 • Dou et al.

Fig. 14. Error Maps against Ground Truth. We visualize the error on the
reconstruction compared to the ground truth meshes on the dataset of [Collet
et al. 2015a].

Fig. 15. Surface Topology Change. We show the recontruction results for a
sequence of moving a pillow away from chest. At each frame, the 1st surface
shows the result with two-way nonrigid matching; the 2nd surface shows the
result with standard forward matching as in Fusion4D; the 3rd one shows the
input mesh (fused from multiple depth maps at the same frame) for reference.

mesh and therefore are comparable to our results, while their sim-
plified meshes uniformly have a mean error of 1mm. In Figure 14 we
visualize the projected error of the tracked reconstruction compared
to the ground truth mesh. Note the improved performance of our
method compared to [Dou et al. 2016] on small details in key areas
such as the face and the hands.

5 DISCUSSION
Contribution of system components. Compared with Fusion4D,
DynamicFusion and others, our new nonrigid alignment compo-
nent has less tracking failure (Figure 18) and results with a smaller
misalignment error (Figure 13 14). More specifically,

Fig. 16. Robustness to the number of views. Dropping the number of view-
points in our multi-view data from 8 views to 4 symmetric views around the
object continues to produce very compelling results albeit with some holes
appearing on the legs due to missing data.

• the proposed two-way nonrigidmatching algorithm improves
the alignments when surface topology change appears as
shown in Figure 15;

• the color term provides more constraints when tracking sur-
faces with subtle geometries (e.g., faces) as shown in Figure 7;

• the learned sparse correspondences and compact nonrigid
parameterization allows the system to handle fast motion.
The energy terms, including the data term (Equation 4) and
the color term (Equation 8), have a smaller convergence basin,
and thus optimizing the problem with these terms requires
a good initialization to converge. The motion field from last
frame is used for initialization, which limits the system to
support fast motion. The sparse correspondences directly give
the optimization problem a bigger convergence basin, while
the compact nonrigid parameterization improves the system
performance and enables the system to consume more data
to improve tracking stability for fast motion. In Figure 12,
we test our system by triggering the cameras at high frame
rates of 100fps and the more typically used 30fps. At low
framerate fast (casual) motion such as swinging the arms up
and down can result many reconstruction artifacts due to
tracking failures. Our results show that both high frame rate
and the sparse correspondences improve the tracking quality.

Note that above new components help the alignment only for the
aforementioned specific cases. The two-way nonrigid matching and
the color term do not help in the case of fast motion, while the
improved performance does not help in the case of surface topology
change.
Our fusion component avoids the space compression problem

(Figure 8), and the detail la yer adds more geometry details (Figure 9).
The atlas mapping component provides better texture compared
with per-vertex color method (Figure 10). More results are shown
in the accompany video.

, Vol. 1, No. 1, Article 246. Publication date: October 2017.

Motion2Fusion: Real-time Volumetric Performance Capture • 246:13

Fig. 17. Qualitative comparison. Several examples that demonstrate the quality and fidelity of our results despite the challenging input.

, Vol. 1, No. 1, Article 246. Publication date: October 2017.

246:14 • Dou et al.

Fig. 18. Qualitative Comparison on our Data. Our system achieves a new state-of-the-art on our challenging sequences, while our re-implementations of previous
work either fails or over-smooths, compromising the fidelity.

, Vol. 1, No. 1, Article 246. Publication date: October 2017.

Motion2Fusion: Real-time Volumetric Performance Capture • 246:15

Robustness to number of viewpoints.While on one hand there
are a number of offline systems such as [Collet et al. 2015a] that have
leverage a huge number of viewpoints. In our multi-view capture
system we use 8 different viewpoints similar to [Dou et al. 2016] in
order to allow for good coverage of the 3D space they encompass.
However, as we show in Figure 11 we achieve good fidelity recon-
structions even in case of a single camera albeit not complete. In
Figure 16 we show even by halving the number of viewpoints from
8 to 4 views within our setup Motion2Fusion continues to obtain
high fidelity detailed reconstructions with minimal missing data
such as the legs, demonstrating the robustness of our approach to
the number of viewpoints.

Limitations. Despite the unprecedented fidelity we can achieve in
real-time, our system still has limitations. For instance, while we
skin mesh vertices properly to geodesically close ED nodes, we still
skin voxels to ED nodes that are close in the Euclidean sense. We
chose this compromise mainly for performance reasons, and it led
to some artifacts when the surface topology changes. Although our
system runs at a high framerate, it still cannot utilize framerates
of some recent depth capture algorithms (e.g, 200fps+ in [Fanello
et al. 2014, 2016, 2017a,b]). Our system drops frames when the
reconstruction falls behind depth capture, but these dropped frames
could be helpful for extremely fast motion capture. Ideally, low-
cost motion field computations could be distributed to each depth
computation device, and the final reconstruction system collects
these motion fields and performs the final refinement and data
fusion.

6 CONCLUSION
We presented Motion2Fusion, a state-of-the-art volumetric perfor-
mance capture system. We have demonstrated the efficacy of Mo-
tion2Fusion over prior work in the high fidelity reconstruction of
dynamic objects while avoiding over-smoothing and retaining high
frequency geometric details. This is key to avoid the uncanny valley
in telepresence and VR/AR scenarios. We developed a high speed
pipeline coupled with a novel machine learning framework for 3D
correspondence field estimation, which reduces tracking error and
artifacts induced by fast motion. We also introduce a backward and
forward non-rigid alignment strategy to address complex topology
changes. Through extensive qualitative and quantitative compar-
isons we show that Motion2Fusion achieves more precise geometric
and texturing results with less artifacts on extremely challenging
sequences compared to the previous state-of-the-art. Pushing on
more robust reconstructions with less infrastructure is a clear highly
impactful area of future work, to bring such technologies to even
more commodity end user scenarios.

REFERENCES
Christian Bailer, Bertram Taetz, and Didier Stricker. 2015. Flow Fields: Dense corre-

spondence fields for highly accurate large displacement optical flow estimation. In
Proceedings of the IEEE International Conference on Computer Vision. 4015–4023.

Ilya Baran and Jovan Popović. 2007. Automatic Rigging and Animation of 3D Characters.
ACM TOG 26, 3 (2007), 72.

Chen Cao, Derek Bradley, Kun Zhou, and Thabo Beeler. 2015. Real-time high-fidelity
facial performance capture. ACM TOG 34, 4 (2015), 46.

Chen Cao, Yanlin Weng, Stephen Lin, and Kun Zhou. 2013. 3D Shape Regression for
Real-time Facial Animation. ACM TOG 32, 4, Article 41 (2013), 10 pages.

Nathan A Carr and John C Hart. 2002. Meshed atlases for real-time procedural solid
texturing. ACM TOG 21, 2 (2002), 106–131.

Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Dennis Evseev, David Calabrese,
Hugues Hoppe, Adam Kirk, and Steve Sullivan. 2015a. High-quality Streamable
Free-viewpoint Video. ACM TOG (2015).

Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Dennis Evseev, David Calabrese,
Hugues Hoppe, Adam Kirk, and Steve Sullivan. 2015b. High-quality streamable
free-viewpoint video. ACM TOG 34, 4 (2015), 69.

Brian Curless and Marc Levoy. 1996. A volumetric method for building complex models
from range images. In SIGGRAPH. 303–312.

Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip Davidson, Sean Ryan Fanello,
Adarsh Kowdle, Sergio Orts Escolano, Christoph Rhemann, David Kim, Jonathan
Taylor, Pushmeet Kohli, Vladimir Tankovich, and Shahram Izadi. 2016. Fusion4D:
Real-time Performance Capture of Challenging Scenes. ACM TOG 35, 4 (2016), 114.

Sean Ryan Fanello, Cem Keskin, Shahram Izadi, Pushmeet Kohli, David Kim, David
Sweeney, Antonio Criminisi, Jamie Shotton, Sing Bing Kang, and Tim Paek. 2014.
Learning to be a depth camera for close-range human capture and interaction. In
ACM Transactions on Graphics (TOG).

Sean Ryan Fanello, Christoph Rhemann, Vladimir Tankovich, A Kowdle, S Orts Escolano,
D Kim, and S Izadi. 2016. Hyperdepth: Learning depth from structured light without
matching. In CVPR.

Sean Ryan Fanello, Julien Valentin, Adarsh Kowdle, Christoph Rhemann, Vladimir
Tankovich, Carlo Ciliberto, Philip Davidson, and Shahram Izadi. 2017a. Low Com-
pute and Fully Parallel Computer Vision with HashMatch. In ICCV.

Sean Ryan Fanello, Julien Valentin, Christoph Rhemann, Adarsh Kowdle, Vladimir
Tankovich, Philip Davidson, and Shahram Izadi. 2017b. UltraStereo: Efficient
Learning-based Matching for Active Stereo Systems. In CVPR.

Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Häusser, Caner Hazırbaş, Vladimir
Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas Brox. 2015. FlowNet:
Learning Optical Flow with Convolutional Networks. In ICCV. 2758–2766.

Kaiwen Guo, Feng Xu, Yangang Wang, Yebin Liu, and Qionghai Dai. 2015. Robust
Non-Rigid Motion Tracking and Surface Reconstruction Using L0 Regularization.
In ICCV. 3083–3091.

Kaiwen Guo, Feng Xu, Tao Yu, Xiaoyang Liu, Qionghai Dai, and Yebin Liu. 2017. Real-
time Geometry, Albedo and Motion Reconstruction Using a Single RGBD Camera.
ACM Transactions on Graphics (TOG) (2017).

Matthias Innmann, Michael Zollhöfer, Matthias Nießner, Christian Theobalt, and Marc
Stamminger. 2016. VolumeDeform: Real-time volumetric non-rigid reconstruction.
In ECCV. 362–379.

Varun Jain and Hao Zhang. 2006. Robust 3D Shape Correspondence in the Spectral
Domain. In SMA. 19–19.

Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O’Sullivan. 2007. Skinning with
dual quaternions. In Proceedings of the 2007 symposium on Interactive 3D graphics
and games. ACM, 39–46.

S. Lazebnik, C. Schmid, and J. Ponce. 2006. Beyond Bags of Features: Spatial Pyramid
Matching for Recognizing Natural Scene Categories. In CVPR, Vol. 2. 2169–2178.

Marius Leordeanu, Martial Hebert, and Rahul Sukthankar. 2009. An Integer Projected
Fixed Point Method for Graph Matching and MAP Inference. In NIPS.

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least squares
conformal maps for automatic texture atlas generation. ACM TOG 21, 3 (2002),
362–371.

Hao Li, Bart Adams, Leonidas J Guibas, and Mark Pauly. 2009. Robust single-view
geometry and motion reconstruction. In ACM Transactions on Graphics (TOG),
Vol. 28. ACM, 175.

Hao Li, Etienne Vouga, Anton Gudym, Linjie Luo, Jonathan T Barron, and Gleb Gusev.
2013. 3D self-portraits. ACM Transactions on Graphics (TOG) 32, 6 (2013), 187.

Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko, Helge Rhodin, Mohammad
Shafiei, Hans-Peter Seidel, Weipeng Xu, Dan Casas, and Christian Theobalt. 2017.
VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera. ACM
Transactions on Graphics 36, 4, 14. https://doi.org/10.1145/3072959.3073596

Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H Barr. 2002. Discrete
differential-geometry operators for triangulated 2-manifolds. Visualization and
mathematics 3, 2 (2002), 52–58.

Richard A Newcombe, Dieter Fox, and Steven M Seitz. 2015. Dynamicfusion: Recon-
struction and tracking of non-rigid scenes in real-time. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 343–352.

Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim,
Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew
Fitzgibbon. 2011. KinectFusion: Real-time dense surface mapping and tracking. In
Mixed and augmented reality (ISMAR), 2011 10th IEEE international symposium on.
IEEE, 127–136.

Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello,Wayne Chang, Adarsh Kowdle,
Yury Degtyarev, David Kim, Philip L Davidson, Sameh Khamis, Mingsong Dou, et al.
2016. Holoportation: Virtual 3D Teleportation in Real-time. In Proceedings of the
29th Annual Symposium on User Interface Software and Technology. ACM, 741–754.

, Vol. 1, No. 1, Article 246. Publication date: October 2017.

https://doi.org/10.1145/3072959.3073596

246:16 • Dou et al.

Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2016. PointNet:
Deep Learning on Point Sets for 3D Classification and Segmentation. In CVPR.

Ali Rahimi and Benjamin Recht. 2007. Random Features for Large-scale KernelMachines.
In NIPS. 5.

Pedro V Sander, John Snyder, Steven J Gortler, and Hugues Hoppe. 2001. Texture
mapping progressive meshes. In SIGGRAPH. ACM, 409–416.

Alla Sheffer and John C Hart. 2002. Seamster: inconspicuous low-distortion texture
seam layout. In Visualization. 291–298.

Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finocchio, Andrew
Blake, Mat Cook, and Richard Moore. 2013. Real-time human pose recognition in
parts from single depth images. Commun. ACM 56, 1 (2013), 116–124.

Marc Soucy, Guy Godin, and Marc Rioux. 1996. A texture-mapping approach for
the compression of colored 3D triangulations. The Visual Computer 12, 10 (1996),
503–514.

Robert W Sumner, Johannes Schmid, and Mark Pauly. 2007. Embedded deformation for
shape manipulation. ACM TOG 26, 3 (2007), 80.

David Joseph Tan, Thomas Cashman, Jonathan Taylor, Andrew Fitzgibbon, Daniel
Tarlow, Sameh Khamis, Shahram Izadi, and Jamie Shotton. 2016. Fits Like a Glove:
Rapid and Reliable Hand Shape Personalization. In IEEE Conference on Computer
Vision and Pattern Recognition.

Jonathan Taylor, Lucas Bordeaux, Thomas Cashman, Bob Corish, Cem Keskin, Toby
Sharp, Eduardo Soto, David Sweeney, Julien Valentin, Benjamin Luff, Arran Topalian,
ErrollWood, Sameh Khamis, Pushmeet Kohli, Shahram Izadi, Richard Banks, Andrew
Fitzgibbon, and Jamie Shotton. 2016. Efficient and Precise Interactive Hand Tracking
Through Joint, Continuous Optimization of Pose and Correspondences. SIGGRAPH
(2016).

C. Theobalt, E. de Aguiar, C. Stoll, H.-P. Seidel, and S. Thrun. 2010. Performance Capture
from Multi-view Video. In Image and Geometry Processing for 3D-Cinematography,
R. Ronfard and G. Taubin (Eds.). Springer, 127ff.

J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner. 2016. Face2Face:
Real-time Face Capture and Reenactment of RGB Videos. In CVPR.

Shenlong Wang, Sean Ryan Fanello, Christoph Rhemann, Shahram Izadi, and Pushmeet
Kohli. 2016. The Global Patch Collider. In CVPR. 127–135.

FrancoWoolfe, Edo Liberty, Vladimir Rokhlin, andMark Tygert. 2008. A fast randomized
algorithm for the approximation of matrices. Applied and Computational Harmonic
Analysis 25, 3 (2008), 335–366.

Jin Xie, Yi Fang, Fan Zhu, and Edward Wong. 2015. Deepshape: Deep learned shape
descriptor for 3D shape matching and retrieval. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 1275–1283.

Mao Ye and Ruigang Yang. 2014. Real-time simultaneous pose and shape estimation
for articulated objects using a single depth camera. In CVPR. IEEE.

Mao Ye, Qing Zhang, Liang Wang, Jiejie Zhu, Ruigang Yang, and Juergen Gall. 2013.
A survey on human motion analysis from depth data. In Time-of-Flight and Depth
Imaging. Sensors, Algorithms, and Applications. Springer, 149–187.

Sergey Zagoruyko and Nikos Komodakis. 2015. Learning to Compare Image Patches
via Convolutional Neural Networks. In CVPR. 4353–4361.

Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert. 2009. A Path Following
Algorithm for the Graph Matching Problem. PAMI 31, 12 (2009), 2227–2242.

Jure Žbontar and Yann LeCun. 2015. Computing the stereo matching cost with a
convolutional neural network. In CVPR. 1592–1599.

F. Zhou and F. De la Torre. 2012. Factorized graph matching. In CVPR. 127–134.
Kun Zhou, John Synder, Baining Guo, and Heung-Yeung Shum. 2004. Iso-charts: stretch-

driven mesh parameterization using spectral analysis. In SGP. 45–54.
Michael Zollhöfer, Matthias Nießner, Shahram Izadi, Christoph Rhemann, Christopher

Zach, Matthew Fisher, Chenglei Wu, Andrew Fitzgibbon, Charles Loop, Christian
Theobalt, et al. 2014. Real-time non-rigid reconstruction using an RGB-D camera.
ACM TOG 33, 4 (2014), 156.

, Vol. 1, No. 1, Article 246. Publication date: October 2017.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Learning the Spectral Embedding
	3.2 Non-rigid Alignment
	3.3 Skinning
	3.4 Data Fusion and Detail Layer
	3.5 Atlas Mapping

	4 Results
	4.1 Implementation deatails and performance
	4.2 Qualitative results
	4.3 Comparisons

	5 Discussion
	6 Conclusion
	References

