
A Flow Model for Joint Action Recognition and Identity Maintenance

Sameh Khamis, Vlad I. Morariu, Larry S. Davis
University of Maryland, College Park
{sameh,morariu,lsd}@umiacs.umd.edu

Abstract

We propose a framework that performs action recogni-
tion and identity maintenance of multiple targets simulta-
neously. Instead of first establishing tracks using an ap-
pearance model and then performing action recognition, we
construct a network flow-based model that links detected
bounding boxes across video frames while inferring activi-
ties, thus integrating identity maintenance and action recog-
nition. Inference in our model reduces to a constrained
minimum cost flow problem, which we solve exactly and
efficiently. By leveraging both appearance similarity and
action transition likelihoods, our model improves on state-
of-the-art results on action recognition for two datasets.

1. Introduction
We introduce a novel framework for human action recog-

nition from videos. We are motivated by the fact that actions
in a video sequence typically follow a natural order. Con-
sider the illustration in Figure 1. The person outlined in
the left image is queueing, while the person outlined in the
right image is waiting to cross. Given the appearance and
stance resemblance, a classifier might return similar scores
for both actions. However, we can take advantage of their
actions at a later time, when the person on the right will be
crossing while the person on the left will still be queueing;
their actions then become more distinguishable.

One issue that remains with this idea is identity main-
tenance. A simple approach would be to build the tracks
of people detections using appearance models, and then
construct an action recognition model that makes use of
the identities established from the tracking step. This ap-
proach assumes that such tracks are accurate and disregards
the advantage of jointly solving both problems under one
framework. This is most evident with similar appearances
and overlapping bounding boxes, where the likelihood of a
transition between compatible actions can improve the in-
ference of the identities.

We develop a novel representation of the joint problem.
We initially train a linear SVM on the Action Context (AC)

Figure 1. How tracking can improve action recognition. While
the person outlined on the left is queueing and the person outlined
on the right is waiting to cross, a classifier might initially return
similar scores for both given the resemblance in their appearance
and stance. However, the actions become more distinguishable
after the person on the right is tracked to subsequent frames and
is observed to be crossing. We present a framework to solve both
problems jointly and efficiently.

descriptor[17], which explicitly accounts for group actions
to recognize an individual’s action. We use the normalized
classifier scores for the action likelihood potentials. We
then train an appearance model for identity association. Our
association potentials incorporate both appearance cues and
action consistency cues. Our problem is then represented
by a constrained multi-criteria objective function. Casting
this problem in a network flow model allows us to perform
inference efficiently and exactly. Finally, we report results
that outperform state-of-the-art methods on two group ac-
tion datasets.

Our contribution in this work is three-fold:

• We propose jointly solving action recognition and
identity maintenance under one framework.
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• We formulate inference as a flow problem and solve it
exactly and efficiently.

• Our action recognition performance improves on the
state-of-the-art results for two datasets.

The rest of this paper is structured as follows. In Sec-
tion 2 we survey the action recognition literature and dis-
cuss our contribution in its light. We introduce our approach
and focus on the problem formulation in Section 3. We then
discuss the system in details in Section 4. We present the
datasets in Section 5, and report our results quantitatively
and qualitatively. And last, we conclude in Section 6.

2. Related Work

In recent work on action recognition, researchers have
explicitly modeled interactions amongst actions being ob-
served, jointly solving multiple previously independent vi-
sion problems. Such interactions include those between
scenes and actions (e.g., road and driving) [19], objects
and actions [14, 30] (e.g., spray bottle and spraying, ten-
nis raquet and swinging) or actions performed by two or
more people [6, 18, 17, 7] (e.g., two people standing versus
two people queueing). More complex high level interac-
tions have also been modeled, e.g., by dynamic Bayesian
networks (DBNs) [29], CASE natural language representa-
tions [16], Context-Free Grammars (CFGs) [22], AND-OR
graphs [15], and probabilistic first-order logic [20, 5].

To reason about actions over time, most of these ap-
proaches require that people or objects are already detected
and tracked [14, 6, 15, 17, 7, 20, 5, 22]. These tracks can
be obtained by first detecting people and objects using de-
tectors such as Felzenszwalb et al. [11] and then linking the
resulting detections to form tracks. For example, the detec-
tion based tracking approach of Zhang et al. [31] links de-
tections into tracklets using a global data association frame-
work based on network flows. Pirsiavash et al. [21] ex-
tend this approach while maintaining global-optimality by
performing shortest path computations on a flow network.
Berclaz et al. divide the scene into a network flow prob-
lem on a spatio-temporal node grid [2], which they solve
using the k-shortest path algorithm. This approach, while
not requiring the detection of bounding boxes before track-
ing, results in a significantly larger state-space than [31].
Ben Shitrit et al. extend this work by introducing a global
appearance model, reducing the number of track switches
for overlapping tracks [25]. While performing tracking and
activity recognition sequentially simplifies action recogni-
tion, since the problem of identity maintenance can be ig-
nored during the recognition step, mistakes performed dur-
ing the tracking step cannot be overcome during recogni-
tion. Motivated by the improved results of explicitly mod-
eling the interactions of multiple vision problems jointly

(person-object, person-person, etc.), we perform joint iden-
tity maintenance and activity recognition.

Our work is closely related to previous work on model-
ing collective behavior [6, 17, 7]. Choi et al. [6] initially
introduced this problem, proposing a spatio-temporal local
(STL) descriptor that relies on an initial 2.5D tracking step
which is used to construct histograms of poses (facing left,
right, forward, or backward) at binned locations around an
anchor person. These descriptors are aggregated over time,
used as features for a linear SVM classifier with a pyramid-
like kernel, and combined with velocity-based features to
infer the activity of each person. Collective activity is mod-
eled through the construction of the STL feature. In later
work, Choi et al. [7] extend the STL descriptor by using ran-
dom forests to bin the attribute space and spatio-temporal
volume adaptively, in order to better discriminate between
collective activities. An MRF applied over the random for-
est output regularizes collective activities in both time and
space. Lan et al. [17] propose a slightly modified descrip-
tor, the action context (AC) descriptor, which, unlike the
STL descriptor, encodes the actions instead of the poses of
people at nearby locations. The AC descriptor stores for
each region around a person a k-dimensional response vec-
tor obtained from the output of k action classifiers.

We adopt the AC descriptor to model human actions in
the context of actions performed by nearby people; how-
ever, to reason about these actions over time, we solve
the problem of identity maintenance and activity recogni-
tion simultaneously in a single framework, instead of pre-
computing track associations. Similar to [31, 21], given hu-
man detections, we pose the problem of identity mainte-
nance as a network flow problem, which allows us to obtain
the solution exactly and efficiently, while focusing on our
final goal of activity recognition.

3. Approach

3.1. Overview

Our focus in this work is to improve human action recog-
nition. We assume that humans have already been local-
ized, e.g., with a state-of-the-art multi-part model [11], or
with background subtraction if the camera is stationary. Our
representation for a detected human figure is based on His-
togram of Oriented Gradients (HOG) [8], for which we use
the popular implementation from Felzenszwalb et al. [11].
We augment our representation with an appearance model
for tracking by blurring and subsampling the three color
channels of the bounding box in Lab color space. We use
this representation to train the action and association like-
lihoods used in our model. Figure 2 illustrates the overall
flow of analysis, and the details are presented in Section 4.
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Figure 2. An overview of our system. Since our focus is human action recognition, we assume a video sequence with detected humans as
bounding boxes. We then run a two-stage classification process with the Action Context (AC) descriptor [17] on top of HOG features [8]
as the underlying representation. We finally use the normalized classifier scores to build our network flow-based model. See Section 3.2
for details.

3.2. Formulation

We use i, j, and k to denote the indices of human de-
tections in a video sequence, while a, b, and c are used to
denote actions. We also define P(i) to be the set of can-
didate predecessors for detection i from prior frames, and
similarly S(i) to be the set of candidate successors of de-
tection i from subsequent frames. We indicate the action
and the identity of a detected person i by yi and zi, respec-
tively. We can then formulate our model as a cost function
over actions and identities represented as

F (y, z) =
∑
i

∑
a

[
ua(i) + v′a(i)

]
1(yi = a), (1)

where ua(i) is the classification cost associated with assign-
ing action a to person i, and v′a(i) is the associated tracking
cost. Commonly, 1(.) is defined as the indicator function.

We define the classification cost ua(i) to be the normal-
ized negative classification score of person i performing ac-
tion a. The details of the classifier training procedure is in
Section 4.2.

Since a detection could designate a new person entering
the scene, we define our tracking cost as

v′a(i) =

{
vab(i, j) if ∃j ∈ P(i) s.t. zi = zj , yj = b,

λ0 otherwise,
(2)

where vab(i, j) is the transition cost that links “person i
performing action a” to a previously tracked “person j per-
forming action b”. If the newly detected person i does not
sufficiently match any of the people previously tracked, the
model incurs a penalty represented by the tuning parameter
λ0, and a new track is established. We define the transition
cost vab(i, j) as

vab(i, j) = λd d(i, j)− λc log(pab), (3)

which is a mixture of an appearance term and an action con-
sistency term. The appearance term measures the similar-
ity between person i and person j with a distance metric
d(i, j), and the action consistency term measures the prior
probability pab of a person performing action a followed
by action b. The tuning parameters λd and λc weigh the
importance of those two terms. The models for calculating
both the appearance distance metric d(i, j) and the action
co-occurrences pab are provided in Section 4.3.

Maximum-a-posteriori (MAP) estimation in our model
can be formulated as the minimum of an integer linear pro-
gram (ILP). We define the following program

min
{e,t,x}

∑
i

∑
a

[
(ua(i) + λ0)ea(i) + (4)

∑
j∈P(i)

∑
b

(ua(i) + vab(i, j))tab(i, j)
]
,

s.t. ea(i) +
∑

j∈P(i)

∑
b

tab(i, j) =

xa(i) +
∑

k∈S(i)

∑
c

tca(k, i) ∀i, a

∑
a

[
ea(i) +

∑
j∈P(i)

∑
b

tab(i, j)
]
= 1 ∀i

{e, t,x} ∈ Bn,

where variable ea(i) denotes the entrance of person i into
the scene performing action a, while variable tab(i, j) de-
notes the transition link of person i performing action a to
person j performing action b. Finally, variable xa(i) de-
notes person i exiting the scene after performing action a.
The entrance, transition, and exit variables are defined to
be binary indicators. The costs ua(i) and vab(i, j) are as
previously defined.

Minimizing the program in Equation 4 is equivalent to
inference in the model from Equation 1. A detected human
figure would always encounter a classification cost, whether
it is linked to a previously tracked detection, or is entering



the scene for the first time. Consequently, it will either in-
cur the transition cost to link it to the previously tracked
detection, or incur the penalty of not having a sufficiently
matching predecessor. The two constraints enforce a valid
assignment according to Equations 1 and 2.

The variables e, t, and x always recover a unique assign-
ment for y and z. Specifically, if detection i just entered the
scene, it will be assigned action yi = a for which ea(i) = 1
and its identity zi will be assigned to an unused track num-
ber. Otherwise, detection i will be instead linked to a previ-
ous detection; in that case, it will be assigned action yi = a
for which tca(k, i) = 1 and the identity will propagate from
that previous detection: zi = zk.

The ILP in Equation 4 represents a network flow prob-
lem. In fact, the first constraint of the ILP is the “flow con-
servation constraint” (or Kirchoff’s Laws). However, the
second constraint, which we refer to as the “explanation
constraint”, is not typically encountered in the minimum
cost flow problem. In our case, it enforces that an action
and an identity be assigned to every person detected in the
video. Figure 3 illustrates the flow graph of an example with
3 frames, 5 detections, and 3 possible actions per person.
Each person is represented by a subset of nodes, and is con-
nected to people from the previous frame, or more gener-
ally, from any previous frame. The connection between two
people is a complete bipartite subgraph between their nodes.
The flow of the minimum cost in the network uniquely as-
signs actions and identities to every detected person in the
video sequence.

3.3. Inference

While minimim cost flow problems with side constraints
can generally be solved by Lagrangian Relaxation (also
known as Dual Decomposition) [1], the form of our con-
straints allows us to provide fast alternative solutions. As
shown in Equation 4 and Figure 3, our formulation uses
constraints on sets of nodes, which motivates us to ex-
plore the link between our model and the so-called Neoflow
problems [12], a set of equivalent generalized network flow
problems that includes submodular flow. Our model is a
special case of the submodular flow problem. The submod-
ular flow problem, introduced by Edmonds and Giles [9],
generalizes the flow conservation constraints of classical
network flows to submodular functions on sets of nodes.
The max-flow min-cut theorem still holds in this more gen-
eral setting [12], and polynomial-time algorithms to solve
this class of problems exist [13, 24].

While we could use any general submodular flow algo-
rithm available [13, 24], we emphasize that constraining the
ILP in Equation 4 to the submodular polyhedron implies
a totally unimodular constraint matrix [12]. Consequently,
we can relax the binary constraint to an interval constraint
and still guarantee an integer solution to the linear program.

We therefore opted for a fast interior-point solver. To im-
prove the inference speed, we only connect people with
overlapping bounding boxes in consecutive frames. Solv-
ing the cost function exactly takes an average of 1.2 sec-
onds for an average sequence length of 520 frames, where
each sequence is subsampled every ten frames during model
construction.

4. Learning the Potentials
4.1. Piecewise Training

Since inference in our model is exact and latent vari-
ables are absent, global training approaches become not
only possible, but deterministic. However, for practical
reasons, we chose to use piecewise training [27]. Piece-
wise training involves dividing the model into several com-
ponents, each of which is trained independently. We are
motivated by recent theoretical and practical results. The-
oretically speaking, piecewise training minimizes an upper
bound on the log partition function of the model, which cor-
responds to maximizing a lower bound on the exact likeli-
hood. In practice, the experiments of [27, 26] show that
piecewise training sometimes outperforms global training,
even when joint full inference is used. We choose to di-
vide our model training across potentials, i.e., we train the
three groups of potentials–unary action, binary action con-
sistency, and binary appearance consistency–independently
from each other. The tuning parameters that weigh the im-
portance of the individual terms were set manually through
visual inspection.

4.2. Action Potentials

We now describe how we train our action likelihood po-
tentials. We use the AC descriptor from Lan et al. [17]. We
utilize HOG features as the underlying representation. We
then train a multi-class linear SVM using LibLinear [10].
Next, a bag-of-words style representation for the action de-
scriptor of each person is built. Each person is represented
by the associated classifier scores, and the strongest classi-
fier response for every action in a set of defined neighbor-
hood regions in their context.

The descriptor of the i-th person becomes the concate-
nation of their action scores and context scores. The ac-
tion scores for person i, given A possible actions, become
Fi = [s1(i), s2(i), . . . , sA(i)], where sa(i) is the score of
classifying person i to action a. The context score, defined
over M neighborhood regions, is

Ci =

[
max

j∈N1(i)
s1(j), . . . , max

j∈N1(i)
sA(j), . . . ,

max
j∈NM (i)

s1(j), . . . , max
j∈NM (i)

sA(j)

]
, (5)
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Figure 3. An illustration of our flow model. Every grouped subset of nodes represents a detection, and the nodes in the subset are potential
actions for that detection. Every detection forms a complete bipartite graph with its predecessors and successors. Here people in every
frame are connected to those in the previous frame, but that can be generalized to any subset of people in any number of frames. The flow
goes from the source node to the sink node assigning actions and identities that minimize our integer linear program in Equation 4. By
enforcing the “explanation constraint”, we are guaranteed an action and an identity for every person in the graph. The colored arcs in the
diagram represent a valid complete assignment in the frame sequence at the bottom. The person outlined in green enters in the first frame,
performs the first action for the entire sequence, and exits in the final frame, while the person outlined in red enters in the second frame,
performs the second action, before exiting at the final frame. Section 3.2 provides the technical details.

where Nm(i) is a list of people in the m-th region in the
neighborhood of the i-th person. We use the same “sub-
context regions” as [17]. We then run a second-stage clas-
sifer on the extracted AC descriptor using the same multi-
class linear SVM implementation of LibLinear [10]. The
classifier scores are negated and then normalized using a
softmax function, and finally incorporated as the unary ac-
tion likelihood potentials ua(i), which assign action a to
person i.

4.3. Association Potentials

To track the identities of the targets in our video se-
quences, we train identity association potentials and incor-
porate them in our model. Our association potentials use

both appearance and action consistency cues. The appear-
ance cues are trained using the subsampled color channels
as features. We train for a Mahalanobis distance matrix M
to estimate the similarity between detections across frames.
The distance matrix is learned so as to bring detections
from the same track closer, and those from different tracks
apart [4]. This is formulated as

M∗ = argmin
M

∑
Tk

[ ∑
i,j∈Tk

(fi − fj)
TM(fi − fj)

−
∑

i′∈Tk,j′ /∈Tk

(fi′ − fj′)
TM(fi′ − fj′)

]
, (6)



where Tk is the k-th track and fi is the feature vector of the
i-th person. We solve for M using the fast Large Margin
Nearest Neighbor (LMNN) implementation of [28]. The
distance between two people i and j can then be defined as

d(i, j) = (fi − fj)
TM(fi − fj). (7)

The action consistency cues are estimated using the
groundtruth action labels from the training set. We count
pairwise co-occurrences of actions on the same track plus a
small additive smoothing parameter α. The counts are nor-
malized into the pairwise co-occurrence probabilities pab of
action pairs a and b.

5. Experiments
5.1. Datasets

We use the group actions dataset from [6] and its aug-
mentation from [7] to evaluate our model. The datasets
are appropriate since they have multiple targets in a nat-
ural setting, while most action datasets, like KTH [23] or
Weizmann [3], have a single person performing a specific
action. The original dataset includes 5 action classes: cross-
ing, standing, queueing, walking, and talking. The aug-
mented dataset includes 6 action classes: crossing, stand-
ing, queueing, talking, dancing, and jogging. The walking
action was removed from the augmented dataset because it
is ill-defined [6]. We only use the bounding boxes, the as-
sociated actions, and the identities. We did not use any of
the 3-D trajectory information.

Our main focus here is action recognition, and track-
ing is used only to improve the performance in the full
model. While we show that joint optimization improves ac-
tion recognition through tracking, it is intuitive that track-
ing performance will also improve through action recogni-
tion. However, such an evaluation is outside the scope of
our work. We evaluate our results similar to [6, 7]. For each
dataset, we perform a leave-one-video-out cross-validation
scheme. This means that when we classify the actions in
one video, we use all the other videos in the dataset for train-
ing and validation. Our action potentials are based on [17],
which we also compare against to analyze the efficacy of
our approach.

5.2. Results

Our confusion matrices for the 5-class and the 6-class
datasets are shown in Figure 4. It is clear that removing the
walking activity improves the classification performance,
possibly due to the apparent ambiguity between walking
and crossing. Our average classification accuracy is 70.9%
on the former dataset and 83.7% on the latter.

We outperform the state-of-the-art methods on the two
datasets, as shown in Table 1. Classification using the AC

Figure 4. Our confusion matrices for the 5-class [6] and the 6-
class [7] datasets. The confusion matrices were obtained using the
full model. Our classification accuracy is 70.9% on the 5-class
dataset and 83.7% on the 6-class dataset.

descriptor that we employ was reported in [17], which we
improve upon. The model from [7] yields the same per-
formance as our model for the first dataset. However, it
employs additional trajectory information, including the 3D
location and the pose of every person [7].

We also report qualitative results on the 6-activity dataset
in Figure 5. Each row in the figure represents a different
video sequence. The first 3 sequences are successful cases
where the full model improves the action classification re-
sults in an adjacent frame, while the final row represents one
failure case where the high confidence of the action classi-
fier in the wrong label causes the full model to misclassify
the action in the consecutive frame.

6. Conclusion

We evaluated how tracking identities helps recover con-
sistent actions across frames, and we unified action classifi-
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Figure 5. Qualitative results with and without our full model. The first two columns are the results of two consecutive frames from the
same video sequence using only the action potentials, and the next two columns are the results of the same two frames, but using our full
model. Each row represents a different video sequence. The first row shows a video sequence where the misclassification of crossing
as queueing is fixed with correct tracking. The second shows the same case for talking being misclassified as crossing, and the third for
jogging being misclassified as dancing. The fourth row is a case where the full model actually decreases the classification accuracy due to
the high confidence of the action classifier in the wrong label.

Approach/Dataset 5 Activities 6 Activities
AC [17] 68.2% -
STV+MC [6] 65.9% -
RSTV [7]* 67.2% 71.7%
RSTV+MRF [7]* 70.9% 82.0%
AC 68.8% 81.5%
AC+Flow 70.9% 83.7%

Table 1. A comparison of classification accuracies of the state-
of-the-art methods on the two datasets. * While the full model
from [7] yields similar results to our model, their model training
employs additional trajectory information, including the 3D loca-
tion and the pose of every person.

cation and identity maintenance in a single framework. We
proposed an efficient flow model to jointly solve both prob-
lems, which could be solved by a myriad of polynomial-
time algorithms. In practice, we can assign actions and
identities to every person in one video sequence in roughly
one second. We reported our action recognition results
on two datasets, and outperformed the state-of-the-art ap-
proaches using the same leave-one-out validation scheme.
Our model generalizes minimum cost flow and is theoreti-
cally linked to other Neoflow problems [12]. It is general,
fast, and can be easily adapted to other problems in com-
puter vision.
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