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Abstract. We propose a model to combine per-frame and per-track
cues for action recognition. With multiple targets in a scene, our model
simultaneously captures the natural harmony of an individual’s action
in a scene and the flow of actions of an individual in a video sequence,
inferring valid tracks in the process. Our motivation is based on the
unlikely discordance of an action in a structured scene, both at the track
level and the frame level (e.g ., a person dancing in a crowd of joggers).
While we can utilize sampling approaches for inference in our model, we
instead devise a global inference algorithm by decomposing the problem
and solving the subproblems exactly and efficiently, recovering a globally
optimal joint solution in several cases. Finally, we improve on the state-
of-the-art action recognition results for two publicly available datasets.

1 Introduction

We introduce a novel framework for human action recognition from videos. We
are motivated by the fact that human actions in a video sequence typically
follow a natural structured order, on both a scene level and an individual level.
Consider the illustration in Figure 1. The person outlined in the left image is
queueing, while the person outlined in the right image is waiting to cross the
road. Given the appearance and pose similarity, a classifier might return similar
scores for both actions for both people. However, the actions performed by the
two people at a later time and the actions of people surrounding them can also
provide information for the action inference task. This becomes evident when
the person on the right starts crossing and nearby pedestrains start doing the
same, while the person on the left stays in the queue and is surrounded by other
people waiting in line; at this point, their actions become distinguishable.

Tackling this problem reveals three main challenges; action recognition, iden-
tity maintenance, and contextual harmony. We propose a representation that
solves all three problems simultaneously and efficiently. A joint solution avoids
the incoherencies that arise from solving each problem separately. We initially
train a linear SVM on the Action Context (AC) descriptor[1], which explicitly
accounts for group actions to recognize an individual’s action. We use the nor-
malized classifier scores for the action likelihood potentials. We then train an
appearance model for identity association. Our association potentials incorpo-
rate both appearance cues and action consistency cues. We also train a scene-
action harmony potential, which accounts for how an action fits into the general



2 Khamis et al .

≠ 

track cues  

      

frame cues      frame cues      
track cues  

      
≈ 

time time 

Fig. 1. How per-frame and per-track cues can improve action recognition. While the
person outlined on the left is queueing and the person outlined on the right is waiting
to cross, a classifier might initially return similar scores for both given the resemblance
in their appearance and stance. However, combining tracking and scene harmony, we
observe that the person the person on the right is crossing in a street setting, while
the person on the left is queueing with other people in line. We present a framework
to solve this model with guarantees on global optimality.

setting of the current scene. Our problem can then be naturally represented as a
constrained multi-criteria objective function. To obtain a tractable solution, we
optimize this function using Dual Decomposition (or Lagrangian Relaxation) by
splitting it into two subproblems, both of which are tractable and can be solved
exactly and efficiently. Applied to two group action datasets, our approach out-
performs state-of-the-art methods.

Our contribution in this work is three-fold:

– We propose a unified model combining per-frame and per-track cues for
action recognition, solving identity maintenance in the process.

– We formulate inference as an optimization problem and solve its decompo-
sitions exactly and efficiently to recover the joint solution.

– Our action recognition performance improves upon the state-of-the-art re-
sults for two publicly available datasets.

The rest of this paper is structured as follows. In Section 2 we survey the ac-
tion recognition literature and discuss our contribution in its light. We introduce



Combining Per-Frame and Per-Track Cues 3

our approach and focus on the problem formulation in Section 3. We then discuss
the system in details in Section 4. In Section 5, we report our quantitative and
qualitative results on public datasets. And last, we conclude in Section 6.

2 Related Work

In recent work on action recognition, researchers are explicitly modeling in-
creasingly complex interactions amongst observations, jointly solving multiple
previously independent vision problems. Such interactions include those be-
tween scenes and actions [2], objects and actions [3, 4] or actions performed by
two or more people [5, 6, 1, 7, 8]. More complex high level interactions have also
been modeled, e.g., by dynamic Bayesian networks (DBNs) [9], CASE natural
language representations [10], Context-Free Grammars (CFGs) [11], AND-OR
graphs [12], and probabilistic first-order logic [13, 14].

Most of these approaches require that people or objects are already detected
and tracked to incorporate temporal cues [3, 5, 12, 1, 7, 13, 14, 11]. Commonly,
tracks are obtained by first detecting people and objects using detectors such
as Felzenszwalb et al . [15] and then linking the detections to form tracks by
various globally-optimal or approximate approaches [16–19]. While performing
tracking and activity recognition sequentially simplifies action recognition, mis-
takes performed during the tracking step cannot be overcome during recognition.
Motivated by recent work [8] that obtains improved results by performing iden-
tity maintenance and action recognition simultaneously and efficiently, we also
solve the identity maintenance problem during action recognition, while model-
ing additional cues provided by the collective activity in a scene.

Our work is closely related to previous work on modeling collective behavior
[5, 1, 6–8]. Choi et al . [5] initially modeled collective activity through the con-
struction of a spatio-temporal local (STL) descriptor that relies on an initial
2.5D tracking step to construct histograms of poses (facing left, right, forward,
or backward) at binned locations around an anchor person. In later work, Choi
et al . [7] extend the STL descriptor by using random forests to bin the attribute
space and spatio-temporal volume adaptively for better discrimination, then ap-
ply an MRF to regularize collective activities in both time and space. Lan et al .
[1] propose the action context (AC) descriptor, which, unlike the STL descriptor,
encodes the actions instead of the poses of people at nearby locations. The AC
descriptor stores for each region around a person a k-dimensional response vec-
tor obtained from the output of k action classifiers. Instead of relying on local
descriptors alone, Lan et al . [6] explicitly model group activity by simultane-
ously modeling the individual actions, their relation to an overall group activity,
and their relation to each other. The structure of the person-person interaction
graph is inferred as part of the overall inference task. In recent work [8] the
AC descriptor is used to perform activity recognition and identity maintenance
jointly.

We adopt the AC descriptor and perform joint action recognition and iden-
tity maintenance, as in [8], but we also explicitly model the collective activity
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in a scene, its effect on individual actions, and its progression over time. Lan
et al. [6] model group activities but not the temporal progression of individual
actions or group activities. Unlike [6], we do not manually specify a semantically
meaningful group activity label, but instead obtain it automatically and use it
only to ensure that the activities of people in the same frame are in harmony
with each other. While our joint model is complex, we are still able to provide
optimality and convergence guarantees without resorting to approximate infer-
ence (e.g., sampling) by decomposing the problem into two sub-tasks, a network
flow problem and a tree-structured graphical model, both of which can be solved
efficiently.

3 Approach

3.1 Overview

Our focus in this work is to improve human action recognition. We assume
that humans have already been localized, e.g ., with a state-of-the-art multi-part
model [15], or with background subtraction if the camera is stationary. Our
representation for a detected human figure is based on Histogram of Oriented
Gradients (HOG) [20], for which we use the popular implementation from Felzen-
szwalb et al . [15]. We augment our representation with an appearance model for
tracking by blurring and subsampling the three color channels of the bounding
box in Lab color space. We use this representation to train the action and as-
sociation likelihoods used in our model. We cluster the histograms of actions
per-scene for our training data into a set of canonical scene types, which are
then used to determine if an action is harmonious with the general setting of the
current frame. We present the details of our system in the following sections.

3.2 Formulation

We use i, j, and k to denote the indices of human detections in a video sequence,
while a, b, and c are used to denote actions. We also use f to denote frames and
s to denote scenes. We define P(i) to be the set of candidate predecessors for
human detection i from prior frames, and similarly S(i) to be the set of candidate
successors of human detection i from subsequent frames. We also define F(i) to
be the frame where human detection i appears. We indicate the action and the
identity of a person i by yi and zi, respectively, and we indicate the scene type
of a frame f by qf . We can then formulate our model as a cost function over
actions, scenes, and identities represented as

F (y,q, z) =
∑
f

∑
s

[
gs(f) + hs(f) + (1)

∑
i∈f

∑
a

[
ua(i) + v′a(i) + wsa(f, i)

]
1(yi = a)

]
1(qf = s),
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where ua(i) is the classification cost associated with assigning action a to person
i, v′a(i) is the associated tracking cost, and wsa(f, i) is the scene-action harmony
cost. gs(f) denotes the scene prior cost, and hs(f) denotes the scene consistency
cost. Commonly, 1(.) is defined as the indicator function.

We define the classification cost ua(i) to be the normalized negative classifi-
cation score of person i performing action a. The details of the classifier training
procedure is in Section 4.2.

Since a detection could designate a new person entering the scene, we define
our tracking cost as

v′a(i) =

{
vab(i, j) if ∃j ∈ P(i) s.t. zi = zj , yj = b,

λ0 otherwise,
(2)

where vab(i, j) is the transition cost that links “person i performing action a”
to a previously tracked “person j performing action b”. If the newly detected
person i does not sufficiently match any of the people previously tracked, the
model incurs a penalty represented by the tuning parameter λ0, and a new track
is established. We define the transition cost vab(i, j) as

vab(i, j) = λd d(i, j)− λc log(pab), (3)

which is a mixture of an appearance term and an action consistency term. The
appearance term measures the similarity between person i and person j with
a distance metric d(i, j), and the action consistency term measures the prior
probability pab of a person performing action a followed by action b. The tuning
parameters λd and λc weigh the importance of those two terms. The models for
calculating both the appearance distance metric and the action co-occurrences
are provided in Section 4.3.

We incorporate scene harmony by modeling a scene using the histogram of
the individual actions in that scene. The scene prior cost gs(f) is calculated as
the negative log prior probability ps of the histogram of actions of scene label s.
The scene consistency cost hs(f) is defined as

hs(f) = λs1(qf 6= qf+), (4)

where f+ is the next frame. The scene consistency cost is in effect a smoothness
prior over scenes in consecutive frames, while the scene-action harmony term
wsa(f, i) is defined as

wsa(f, i) = −λh log(psa), (5)

which models the likelihood psa of an individual performing action a in a scene
labeled s. The tuning parameters λs and λh weigh the importance of those two
terms.
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Fig. 2. The representation of our model using factor graph notation. The blue nodes
denote the human detections, the green nodes denote the scenes, and the grey nodes
denote the identity matching across frames. The potentials presented in Section 3.2
are represented by their associated factor nodes. The decomposition describe in Sec-
tion 3.3 is shown at the bottom, along with how the potentials are distributed across
the subproblems. Refer to the text for more details.

We illustrate our full model in factor graph notation in Figure 2. The blue
nodes represent human detections, the green nodes represent scenes, and the
grey nodes represent the identity matching between frames. Pairwise cliques tie
the scene nodes to all the detections in a specific frame, enforcing a harmonious
labeling for the frame, while high-order cliques connect detections across frames
to enforce both a valid identity assignment and a valid action-action transition
across the tracks. Scene nodes are connected to neighboring scene nodes to dis-
courage abrupt scene label changes.

3.3 Inference

Inference in our model can be formulated as a relaxed integer linear program, but
it is more advantageous to leverage the underlying structure of the model. We
therefore devise the decomposition illustrated in Figure 2. Maximum-a-posteriori
(MAP) estimation in our model can be obtained using a Dual Decomposition
optimization scheme [21, 22].

From Equation 1, our model is a function of actions, identities, and scenes.
We observe that we can represent the problem via decomposition as
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min
y,q,z

F (y,q, z) = min
y,q,z

[
F1(y,q) + F2(y, z)

]
(6)

where F1(.) is a function of the actions and scenes in each frame, while F2(.) is
a function of the actions and identities across the tracks. To break the objective
function into two parts, we introduce a copy of the complicating variable y for
each subproblem and add a consistency (or consensus) constraint to force the
two copies to match:

min
y1,y2,q,z

[
F1(y1,q) + F2(y2, z)

]
, (7)

s.t. y1 = y2, (8)

We now introduce the the dual variables ν and form the Lagrangian

L(y1,y2,q, z,ν) = F1(y1,q) + F2(y2, z) + νy1 − νy2, (9)

which can be separated into two subproblems and yields a lower bound on
the optimal solution to the original problem [21]. We then form the dual problem

max
ν

L(y1,y2,q, z,ν) = (10)

max
ν

[
min
y1,q

[
F1(y1,q) + νy1

]
︸ ︷︷ ︸

Subproblem 1

+ min
y2,z

[
F2(y2, z)− νy2

]
︸ ︷︷ ︸

Subproblem 2

]
,

so that solving the original problem reduces to an iterative process involving the
following primal-dual steps:

1. Optimize the two subproblems to obtain the primal variables y1,y2,q, z
2. Optimize the dual variables using a subgradient step ν = ν + ηt (y1 − y2)

where ηt is the step size for iteration t [21]. The complicating potentials in our
model are the classification cost potentials ua(i) (see Figure 2) and therefore are
distributed evenly across the two subproblems, where each subproblem is then
a function of ua(i)/2, for all u and i.

Subproblem 1. The first subproblem is a function of the actions y and the
scenes q as illustrated on the bottom left of Figure 2. The modified classifica-
tion cost ǔa(i) is defined as ua(i)/2 + νa(i), while the costs gs(f), hs(f), and
wsa(f, i) are as previously defined. The problem is a tree-structured pairwise
graphical model, and hence MAP inference is tractable. We optimize the sub-
problem exactly and efficiently by maximizing its negative objective function
using Max-Product Belief Propagation [23].
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Subproblem 2. The second subproblem is a function of the actions y and
the identities z as illustrated on the bottom right of Figure 2. The high-order
cliques in this problem have a special structure; they ensure the validity of the
identity assignment between detections, and the consistency of actions across
linked detections. While a Belief Propagation algorithm can be formulated for
this problems, the time complexity would be pseudo-polynomial [24]. Instead,
we use the following integer linear program (ILP) [8]

min
e,t,x

∑
i

∑
a

[
(ûa(i) + λ0)ea(i) +

∑
j∈P(i)

∑
b

(ûa(i) + vab(i, j))tab(i, j)
]
, (11)

s.t. ea(i) +
∑

j∈P(i)

∑
b

tab(i, j) = xa(i) +
∑

k∈S(i)

∑
c

tca(k, i) ∀i, a

∑
a

[
ea(i) +

∑
j∈P(i)

∑
b

tab(i, j)
]

= 1 ∀i

{e, t,x} ∈ Bn,

where variable ea(i) denotes the entrance of person i into the scene performing
action a, while variable tab(i, j) denotes the transition link of person i performing
action a to person j performing action b. Finally, variable xa(i) denotes person
i exiting the scene after performing action a. The entrance, transition, and exit
variables are binary indicators. The cost vab(i, j) is as previously defined, while
the modified classification cost ûa(i) is defined as ua(i)/2− νa(i).

Minimizing the program in Equation 11 is equivalent to inference in the
second subproblem from Equation 10. The form of the high-order clique potential
between detections of adjacent frames is very sparse. It does not tie the actions of
everyone detected in the corresponding frame. It, however, enforces a valid match
and thus a valid action transition. The variables e, t, and x always recover a
unique assignment for y and z. Specifically, if detection i just entered the scene,
it will be assigned action yi = a for which ea(i) = 1 and its identity zi will
be assigned to an unused track number. Otherwise, detection i will be instead
linked to a previous detection; in that case, it will be assigned action yi = a for
which tca(k, i) = 1 and the identity will propagate from that previous detection:
zi = zk.

The ILP in Equation 11 represents a network flow problem [8]. In fact, the
first constraint of the ILP is the “flow conservation constraint” (or Kirchoff’s
Laws). However, the second constraint, which is refered to as the “explanation
constraint”, is not typically encountered in the minimum cost flow problem. In
this case, it enforces that an action and an identity be assigned to every person
detected in the video. The flow of the minimum cost in the network uniquely
assigns actions and identities to every detected person in a video sequence.

The contraint matrix of this ILP is totally unimodular [8]. Consequently,
we can relax the binary constraint to an interval constraint and still guarantee
an integer solution to the linear program. We therefore use a fast interior-point
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solver. To improve the inference speed, we only connect people with overlapping
bounding boxes in consecutive frames.

Solution Recovery. On convergence, the primal variables y1,y2,q, z and the
dual variables ν are obtained. In the case of an agreement between the two copies
y1 and y2, the original complicating variable y is trivially recovered. Otherwise,
we recover the best assignment for y by examining the associated dual variables
ν, similar to [22]. The solution is typically tight in 3 iterations, and in several
cases the global solution is attained in 6-10 iterations.

4 Learning

4.1 Piecewise Training

Since inference in our model is exact and latent variables are absent, global
training approaches become not only possible, but deterministic. However, for
practical reasons, we chose to use piecewise training [25]. Piecewise training
involves dividing the model into several components, each of which is trained
independently. We are motivated by recent theoretical and practical results.
Theoretically speaking, piecewise training minimizes an upper bound on the
log partition function of the model, which corresponds to maximizing a lower
bound on the exact likelihood. In practice, the experiments of [25, 26] show that
piecewise training sometimes outperforms global training, even when joint full
inference is used. We choose to divide our model training across potentials, and
train the groups of potentials independently from each other. The parameters
λ0, λc, λd, λs, and λh were manually tuned and ultimately set to 0.25, 0.25, 0.5,
0.1, and 0.25 resepectively for all the experiments.

4.2 Action Potentials

We now describe how we train our action likelihood potentials. We use the
AC descriptor from Lan et al . [1]. We employ HOG features as the underlying
representation. We then train a multi-class linear SVM using LibLinear [27].
Next, a bag-of-words style representation for the action descriptor of each person
is built. Each person is represented by the associated classifier scores, and the
strongest classifier response for every action in a set of defined neighborhood
regions in their context.

The descriptor of the i-th person becomes the concatenation of their action
scores and context scores. The action scores for person i, given A possible actions,
become Fi = [s1(i), s2(i), . . . , sA(i)], where sa(i) is the score of classifying person
i to action a. The context score, defined over M neighborhood regions, is

Ci =

[
max

j∈N1(i)
s1(j), . . . , max

j∈N1(i)
sA(j), . . . , max

j∈NM (i)
s1(j), . . . , max

j∈NM (i)
sA(j)

]
,

(12)
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where Nm(i) is a list of people in the m-th region in the neighborhood of the i-th
person. We use the same “sub-context regions” as [1]. We then run a second-
stage classifer on the extracted AC descriptor using the same multi-class linear
SVM implementation of LibLinear [27]. The classifier scores are negated and
then normalized using a softmax function, and finally incorporated as the unary
action likelihood potentials ua(i), which assign action a to person i.

4.3 Association Potentials

To track the identities of the targets in our video sequences, we train identity
association potentials and incorporate them in our model. Our association po-
tentials use both appearance and action consistency cues. The appearance cues
are trained using the subsampled color channels as features. We train for a Ma-
halanobis distance matrix M to estimate the similarity between detections across
frames. The distance matrix is learned so as to bring detections from the same
track closer, and those from different tracks apart [28]. This is formulated as

M∗ = arg min
M

∑
Tk

[ ∑
i,j∈Tk

(fi − fj)
TM(fi − fj) −

∑
i′∈Tk
j′ /∈Tk

(fi′ − fj′)
TM(fi′ − fj′)

]
,

(13)

where Tk is the k-th track and fi is the feature vector of the i-th person. We solve
for M using the fast Large Margin Nearest Neighbor (LMNN) implementation
of [29]. The distance between the features of two detected people i and j can
then be defined as

d(i, j) = (fi − fj)
TM(fi − fj). (14)

The action consistency cues are estimated using the groundtruth action labels
from the training set. We count pairwise co-occurrences of actions on the same
track plus a small additive smoothing parameter α. The counts are normalized
into the pairwise co-occurrence probabilities pab of action pairs a and b.

4.4 Scene Potentials

We cluster the histograms of actions in all the frames of our training set using
k-means, where we set k = 8 in all of our experiments. The k-means cluster
centroids are good representatives of the most likely scenes, and so the centroid
histograms are an appropriate approximation for the likelihood of an action given
a scene canonical scene types, while the number of points in each cluster is used
to approximate the scene prior probability. The form of our scene potentials is
similar to the harmony potentials introduced in [30], but our training approach
is different.
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5 Experiments

5.1 Datasets

We use the group actions dataset from [5] and its augmentation from [7] to eval-
uate our model. The datasets are appropriate since they have multiple targets in
a natural setting, while most action datasets, like KTH [31] or Weizmann [32],
have a single person performing a specific action. The original dataset includes 5
action classes: crossing, standing, queueing, walking, and talking. The augmented
dataset includes 6 action classes: crossing, standing, queueing, talking, dancing,
and jogging. The walking action was removed from the augmented dataset be-
cause it is ill-defined [5]. We only use the bounding boxes, the associated actions,
and the identities. We did not use any of the 3-D trajectory information.

Our main focus here is action recognition, and tracking is used only to im-
prove the performance in the full model. We evaluate our results similar to [5,
7]. For each dataset, we perform a leave-one-video-out cross-validation scheme.
This means that when we classify the actions in one video, we use all the other
videos in the dataset for training and validation. Our action potentials are based
on [1], which we also compare against to analyze the efficacy of our approach.

5.2 Results

Our confusion matrices for the 5-class and the 6-class datasets are shown in
Figure 3. It is clear that removing the walking activity improves the classifica-
tion performance, possibly due to the apparent ambiguity between walking and
crossing. Our average classification accuracy is 72.0% on the former dataset and
85.8% on the latter.

We outperform the state-of-the-art methods on the two datasets, as shown
in Table 1. Classification using the AC descriptor that we employ was reported
in [1], which we improve upon. The model from [7] employs additional trajectory
information, including the 3D location and the pose of every person [7].

We also report qualitative results on the 6-activity dataset in Figure 4. Each
row in the figure represents a different video sequence. The first 3 sequences are
successful cases where the full model improves the action classification results
over either the track cues or the frame cues in isolation, while the final row
represents one failure case where the high confidence in the wrong label causes
the full model to misclassify the entire frame.

6 Conclusion

We introduced a model that combines tracking cues and scene cues to improve
action classification results. The intractability of our model is overcome by a
decomposition that leverages its underlying structure. The decomposition yields
two subproblems, which we solve exactly and efficiently. We recover the solution
to the original problem, which is optimal in several cases. Finally, by combining
both cues, we reported action recognition results that outperform the state-of-
the-art on two publicly available datasets using the same validation scheme.
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Fig. 3. Our confusion matrices for the 5-class [5] and the 6-class [7] datasets. The
confusion matrices were obtained using the full model. Our classification accuracy is
72.0% on the 5-class dataset and 85.8% on the 6-class dataset.

Approach/Dataset 5 Activities 6 Activities

AC [1] 68.2% -
STV+MC [5] 65.9% -
RSTV [7]* 67.2% 71.7%
RSTV+MRF [7]* 70.9% 82.0%

Unary (AC) [8] 68.8% 81.5%
AC+Track Cues [8] 70.9% 83.7%
AC+Frame Cues 70.7% 84.8%
AC+Full Model 72.0% 85.8%

Table 1. A comparison of classification accuracies of the state-of-the-art methods on
the two datasets. Our full model outperforms previous approaches and can be solved
deterministically with some global optimality guarantees. * The approach of [7] employs
additional trajectory information in training, including the 3D location and the pose
of every person.

Acknowledgements

This research was partially supported by ONR MURI grant N000141010934 and
by a grant from Siemens Corporate Research in Princeton, NJ.

References

1. Lan, T., Wang, Y., Mori, G., Robinovitch, S.N.: Retrieving actions in group con-
texts. In: SGA. (2010)

2. Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: CVPR. (2009)
3. Gupta, A., Davis, L.S.: Objects in action: An approach for combining action

understanding and object perception. In: CVPR. (2007)
4. Yao, B., Fei-Fei, L.: Modeling mutual context of object and human pose in human-

object interaction activities. CVPR (2010)



Combining Per-Frame and Per-Track Cues 13

crossing waiting queueing talking dancing jogging 

AC+Frame Cues Unary (AC) AC+Track Cues AC+Full Model 

Fig. 4. Qualitative results of our model. The four columns represent the results using
our unary potentials only, the track cues, the frame cues, and the full model respectively.
The first row is a case where the full model, combining both cues, outperforms using
either the frame cues or the track cues in isolation. In the second row the track cues
degraded the results of the unary potentials due to identity matching inaccuracies in
the busy scene, but the full model still yielded a perfect classification result. The frame
cues were not able to fix classifier errors in the third row, but the full model leverged
tracking and reported accurate results. Finally, the final row is a failure case where the
full model reinforced the wrong result, classifying everyone incorrectly, even though
the frame cues were successful.

5. Choi, W., Shahid, K., Savarese, S.: What are they doing?: Collective activity
classification using spatio-temporal relationship among people. In: VS. (2009)

6. Lan, T., Wang, Y., Yang, W., Mori, G.: Beyond actions: Discriminative models
for contextual group activities. In: NIPS. (2010)

7. Choi, W., Shahid, K., Savarese, S.: Learning context for collective activity recog-
nition. In: CVPR. (2011)

8. Khamis, S., Morariu, V.I., Davis, L.S.: A flow model for joint action recognition
and identity maintenance. In: CVPR. (2012)

9. Xiang, T., Gong, S.: Beyond tracking: modelling activity and understanding be-
haviour. IJCV 67 (2006) 21–51

10. Hakeem, A., Shah, M.: Learning, detection and representation of multi-agent events
in videos. AI (2007)



14 Khamis et al .

11. Ryoo, M.S., Aggarwal, J.K.: Stochastic representation and recognition of high-level
group activities. IJCV 93 (2010) 183–200

12. Gupta, A., Srinivasan, P., Shi, J., Davis, L.S.: Understanding videos, constructing
plots learning a visually grounded storyline model from annotated videos. In:
CVPR. (2009)

13. Morariu, V.I., Davis, L.S.: Multi-agent event recognition in structured scenarios.
In: CVPR. (2011)

14. Brendel, W., Todorovic, S., Fern, A.: Probabilistic event logic for interval-based
event recognition. In: CVPR. (2011)

15. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multi-
scale, deformable part model. In: CVPR. (2008)

16. Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking
using network flows. In: CVPR. (2008)

17. Pirsiavash, H., Ramanan, D., Fowlkes, C.: Globally-optimal greedy algorithms for
tracking a variable number of objects. In: CVPR. (2011)

18. Berclaz, J., Fleuret, F., Tretken, E., Fua, P.: Multiple object tracking using k-
shortest paths optimization. PAMI 33 (2011) 1806–1819

19. Shitrit, H.B., Berclaz, J., Fleuret, F., Fua, P.: Tracking multiple people under
global appearance constraints. In: ICCV. (2011)

20. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR. (2005)

21. Bertsekas, D.: Nonlinear Programming. Athena Scientific (1999)
22. Komodakis, N., Paragios, N., Tziritas, G.: Mrf optimization via dual decomposi-

tion: Message-passing revisited. In: ICCV. (2007)
23. Pearl, J.: Reverend bayes on inference engines: A distributed hierarchical approach.

In: AAAI. (1982) 133–136
24. Gamarnik, D., Shah, D., Wei, Y.: Belief propagation for min-cost network flow:

convergence & correctness. In: SODA. (2010)
25. Sutton, C., McCallum, A.: Piecewise training for undirected models. In: UAI.

(2005)
26. Shotton, J., Winn, J., Rother, C., Criminisi, A.: Textonboost: Joint appearance,

shape and context modeling for multi-class object recognition and segmentation.
In: ECCV. (2006)

27. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library
for large linear classification. JMLR 9 (2008) 1871–1874

28. Brendel, W., Amer, M., Todorovic, S.: Multiobject tracking as maximum-weight
independent set. In: CVPR. (2011)

29. Weinberger, K.Q., Saul, L.K.: Fast solvers and efficient implementations for dis-
tance metric learning. In: ICML. (2008)

30. Gonfaus, J.M., Boix, X., de Weijer, J.V., Bagdanov, A.D., Serrat, J., Gonzàlez, J.:
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