
Depth from Motion for Smartphone AR

JULIEN VALENTIN, ADARSH KOWDLE, JONATHAN T. BARRON, NEAL WADHWA, MAX DZITSIUK,
MICHAEL SCHOENBERG, VIVEK VERMA, AMBRUS CSASZAR, ERIC TURNER, IVAN DRYANOVSKI,
JOAO AFONSO, JOSE PASCOAL, KONSTANTINE TSOTSOS, MIRA LEUNG, MIRKO SCHMIDT, ONUR
GULERYUZ, SAMEHKHAMIS, VLADIMIR TANKOVITCH, SEANFANELLO, SHAHRAM IZADI, andCHRISTOPH
RHEMANN, Google Inc.

Fig. 1. AR occlusions. Estimating the depth of the scene is crucial to render virtual objects such that they realistically blend into the real context. We provide
the first system capable of providing dense, low latency depth maps at 30Hz on a single mobile CPU core, using only the standard color camera found on most
smartphones. Applications include AR shopping, navigation and creative photo apps.

Augmented reality (AR) for smartphones has matured from a technology
for earlier adopters, available only on select high-end phones, to one that
is truly available to the general public. One of the key breakthroughs has
been in low-compute methods for six degree of freedom (6DoF) tracking on
phones using only the existing hardware (camera and inertial sensors). 6DoF
tracking is the cornerstone of smartphone AR allowing virtual content to
be precisely locked on top of the real world. However, to really give users
the impression of believable AR, one requires mobile depth. Without depth,
even simple effects such as a virtual object being correctly occluded by the
real-world is impossible. However, requiring a mobile depth sensor would
severely restrict the access to such features. In this article, we provide a novel

Authors’ address: Julien Valentin; Adarsh Kowdle; Jonathan T. Barron; Neal Wad-
hwa; Max Dzitsiuk; Michael Schoenberg; Vivek Verma; Ambrus Csaszar; Eric Turner;
Ivan Dryanovski; Joao Afonso; Jose Pascoal; Konstantine Tsotsos; Mira Leung; Mirko
Schmidt; Onur Guleryuz; Sameh Khamis; Vladimir Tankovitch; Sean Fanello; Shahram
Izadi; Christoph Rhemann, Google Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
0730-0301/2018/11-ART193
https://doi.org/10.1145/3272127.3275041

pipeline for mobile depth that supports a wide array of mobile phones, and
uses only the existing monocular color sensor. Through several technical
contributions, we provide the ability to compute low latency dense depth
maps using only a single CPU core of a wide range of (medium-high) mobile
phones. We demonstrate the capabilities of our approach on high-level AR
applications including real-time navigation and shopping.

CCSConcepts: •Computingmethodologies→Computer vision;Epipo-
lar geometry; 3D imaging; Mixed / augmented reality;

Additional Key Words and Phrases: depth from motion, structure from
motion, motion stereo.

ACM Reference Format:
Julien Valentin, Adarsh Kowdle, Jonathan T. Barron, Neal Wadhwa, Max
Dzitsiuk, Michael Schoenberg, Vivek Verma, Ambrus Csaszar, Eric Turner,
IvanDryanovski, JoaoAfonso, Jose Pascoal, Konstantine Tsotsos,Mira Leung,
Mirko Schmidt, Onur Guleryuz, Sameh Khamis, Vladimir Tankovitch, Sean
Fanello, Shahram Izadi, and Christoph Rhemann. 2018. Depth from Motion
for Smartphone AR. ACM Trans. Graph. 37, 6, Article 193 (November 2018),
19 pages. https://doi.org/10.1145/3272127.3275041

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275041
https://doi.org/10.1145/3272127.3275041

193:2 • Valentin et al.

1 INTRODUCTION
In recent years, the mobile industry has significantly invested in
augmented reality (AR) for smartphones. Your mobile phone can
now be a viewfinder on an augmented world, where virtual con-
tent is rendered on top of the color camera feed in real-time. Al-
most all emerging high-end or mid-range phones now have some
form of six degree of freedom (6DoF) tracking capability using just
the typical sensors found inside these devices – the color camera
and inertial measurement unit (IMU). This shift has required many
breakthroughs in visual inertial odometry (VIO) and simultaneous
localization and mapping (SLAM).

These advancements have led to the release of sparse 6DoF track-
ing platforms such as ARKit [Apple 2018] and ARCore [Google
2018] with AR applications that create the illusion that users can
place and lock virtual objects in their environments. However, the
illusion breaks as soon as visual inconsistencies appear, such as
wrong occlusions between real and virtual objects.

To achieve another level of immersion, one needs dense depth
maps on device, and in real-time. Depth is a prerequisite for more
realistic AR, including correct handling of occlusions of virtual con-
tent by real objects, better placement of virtual content, and enabling
interactions (such as physics collisions) between real and virtual
content. However, despite many breakthroughs on smartphone AR,
none of these devices can currently provide real-time dense depth
maps without adding a dedicated new sensor. While we are clearly
heading towards a future where dedicated depth sensors will be-
comemore ubiquitous, for now, adding such sensors means that a lot
of the ubiquity and appeal of smartphone AR is lost, with additional
negative impact on cost, power, and industrial design. Therefore,
leveraging monocular color cameras is the best path to scale dense
depth estimation to millions of existing devices. Although the lit-
erature on monocular depth estimation is extensive (see related
work), no method exists that is capable of providing dense and
edge-preserving depth maps at low computation on mobile phones
today.

This paper introduces a novel pipeline capable of supplying dense
and low latency QVGA depth maps at 30Hz, leveraging only a single
RGB camera and a single CPU core of a smartphone. Figure 1 illus-
trates how this depth map can be used to realistically render virtual
objects in real-time, enabling new effects that can enhance a wide
array of mobile applications including shopping, street navigation
and self expression.

The task at hand has several challenges. First, our approach needs
to work across a variety of different phones with different camera
sensors for which we do not have control over parameters like
exposure or focus. Second, we must deliver dense depth at low
latency and low computation to the user, even under conditions
of poor tracking or untextured environments. Third, we want to
support mid-tier mobile CPUs—e.g. single 1.9GHz Qualcomm A53
CPU core.
We solve this task through a novel depth from motion pipeline,

comprising of the following technical contributions:

• A procedure allowing the use of polar rectified images for
efficient stereo matching.
• A new keyframe selection strategy.

• A highly optimized stereo matching algorithm leveraging the
best aspects of PatchMatch Stereo [Bleyer et al. 2011] and
HashMatch [Fanello et al. 2017a].
• New extensions of the bilateral solver [Barron and Poole
2016] for depth post-processing that: (a) lead to higher qual-
ity point clouds by encouraging planar solutions, (b) a new
initialization scheme leading to faster convergence and lower
computation requirements, and (c) a novel formulation for
producing temporally stable results.
• Finally, a new late stage rendering step that provides a fluid
low-latency experience to users.

2 RELATED WORK
Mobile Depth. We focus on related work for estimating depth on
mobile phones using existing monocular sensors, as opposed to
dedicated hardware. For a more general discussion about the state
of the art on passive depth estimation, we refer the interested reader
to [Fanello et al. 2017a; Hamzah and Ibrahim 2016; Kendall et al.
2017; Scharstein and Szeliski 2002].

In the literature, passive depth estimation onmobile platforms has
almost exclusively been studied in the context of 3D reconstruction.
These types of algorithms fuse sparse depth maps over time into
an underlying volumetric representation. Notable methods that use
Truncated Signed Distance Functions (TSDF) as a representation
include [Kähler et al. 2015; Ondrúška et al. 2015; Schöps et al. 2017b].

The approach described in [Ondrúška et al. 2015] generates sparse
depth maps of size 320 × 240 at 50Hz on an iPhone GPU using an
approximation of PatchMatch Stereo [Bleyer et al. 2011] and a dense
tracking pipeline akin to DTAM [Newcombe et al. 2011] but with
IMU initialization. Their overall pipeline is distributed across the
CPU and the GPU and runs at 25Hz, but is unfortunately unable to
handle general camera motion. The pipeline of [Schöps et al. 2017b]
computes sparse 320×240 depth maps at 12Hz on the GPU of Tango
Tablets. These depth maps are then integrated in a TSDF at 8Hz.
[Kähler et al. 2015] describe a pipeline that fuses depth maps at
24Hz on an iPad Air 2, but assumes that the depth is provided by a
third party.
Unfortunately, the use of mobile GPUs for continuous mobile

usage is prohibitive, due to power consumption, thermal consider-
ations (GPUs cause thermal issues if continually maxed), and the
need to have such GPU resources available for rendering. TSDF rep-
resentations also generally require significant amounts of memory
and also need large camera motions to carve away edge-fattening
caused by stereo-matching and to fill holes. Surfels are less memory
demanding than a TSDF and are used by [Kolev et al. 2014] to fuse
depth maps generated by the technique described in [Tanskanen
et al. 2013], which takes seconds per frame.
Another approach is described in [Schöps et al. 2014] where

320× 240 semi-dense depth maps are computed at 15Hz on a mobile
CPU, from which a collision mesh is extracted. The mesh does not
cover the whole image however, and object boundaries are not
explicitly handled. Therefore, triangles can span objects belonging
to the foreground and background of the scene.

Fusion-based methods aside, [Suwajanakorn et al. 2015] estimate
depth from defocus. Given a focal sweep captured by a moving

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:3

camera, this technique compensates for small viewpoint changes
that occur during the acquisition of the focal stack and performs
auto-calibration and depth estimation. Although a mobile phone is
used for the data capture, the inference process takes 20 minutes
per depth map.
Various deep learning-based formulations to depth estimation

have been recently investigated. [Liu et al. 2016] trained unary and
pairwise MRF potentials using CNNs to predict depth from a single
image in 120ms . A two-scale deep network was proposed in [Eigen
et al. 2014] and trained on images and their corresponding depth
maps. [Garg et al. 2016] minimize a reconstruction loss using a
warp image for single view depth estimation, but needs to linearize
their objective using Taylor expansion to backpropagate through
it. [Godard et al. 2017] take a similar approach, but instead use
bilinear sampling for a fully differentiable objective function. Al-
though [Eigen et al. 2014] and [Godard et al. 2017] report inference
at < 35ms per frame, they both still need a high-end desktop GPU
to achieve this real-time performance.

Late stage rendering. To reduce perceived latency, late stage render-
ing or time-warping [Evangelakos and Mara 2016; Van Waveren
2016] can be used. It is mostly studied in the context of AR/VR
rendering where head-motion occurs after rendering and needs to
be compensated for prior to display to reduce perceived latency. For
best user experiences, this end-to-end latency [Mine and Bishop
1993] should not exceed 20ms [Zhang and Luo 2012].

Common approaches apply a rotational-only correction for asyn-
chronous reprojection by applying a homography which transforms
the rendered viewpoint to the final display viewpoint [Hartley and
Zisserman 2003]. Fully positional-aware warping solutions require
access to perfect depth of the scene, which is feasible for rendered
content, but more difficult in the general case. In this paper, we
present a novel screen-space technique to reduce latency that does
not rely on accurate depth estimation or simplified scene assump-
tions.

Depth map densification. Most stereo or depth-recovery algorithms
contain a densification step in which noisy, sparse, or otherwise
incomplete depth observations are turned into a dense and smooth
depth map, often using a “reference” RGB image to encourage depth
edges to co-occur with color edges. For an extensive overview of
the literature, we refer the interested reader to [Pan et al. 2018; Park
et al. 2014; Weerasekera et al. 2018].

Variational inpainting [Oliveira et al. 2001] approaches based on
Total Variation (TV) [Shen and Chan 2002] have been shown to run
in real-time on the GPU of a tablet [Schöps et al. 2017a]. However,
these systems have significantly more computational performance
than a CPU core of a phone, while carrying the challenges associated
with mobile GPUs outlined earlier.

The fast bilateral solver [Barron and Poole 2016] is another ap-
proach to denoise and complete depthmaps. It produces high-quality
results by solving a global optimization problem in “bilateral space”
as opposed to over all pixels in an image, resulting in runtimes that
are largely independent of image resolution. The bilateral solver
has been used successfully on mobile devices as shown in [Wadhwa
et al. 2018] and recently received a “hardware-friendly” extension

described in [Mazumdar et al. 2017] that allows it to more efficiently
leverage parallelization and vectorization on mobile hardware. We
build upon this work in this paper.

Although there is a significant body of work on using deep learn-
ing to inpaint color images (e.g, [Oord et al. 2016; Pathak et al. 2016],
the literature on deep depth inpainting is more recent. Given aligned
color and depth input, [Zhang and Funkhouser 2018] predict surface
normals and occlusion boundaries from the color and then solve a
linear system to inpaint the depth. Their approach runs at 1.8 sec-
onds per frame on a Titan X GPU, making it prohibitive for mobile
use cases.

Depth map temporal filtering. To achieve a temporally coherent
depth map many works incorporate temporal consistency directly
into the stereo matching process. The works most closely related
to our approach are [Hosni et al. 2011; Richardt et al. 2010] where
a spatio-temporal filter based on the guided image filter and bilat-
eral grid are used to smooth a cost volume. Other approaches use
spatio-temporal filters to post-process the depth map to provide a
more coherent solution [Richardt et al. 2012]. However, these ap-
proaches perform the filtering on a GPU. We opt for incorporating
temporal consistency into the bilateral solver which allows for a
computationally efficient and effective approach.

3 SYSTEM OVERVIEW
We now outline all the components of the proposed depth from
motion pipeline.
As the user navigates through their environment with a smart-

phone in hand, our pipeline starts by tracking 6DoF poses using the
off-the-shelf VIO platform of ARCore [Google 2018]. Note, that our
system could use any other VIO or SLAM platform at this stage.
Once the the 6DoF tracking pipeline is initialized and given the

latest available camera image (we use grayscale images for com-
putational reasons), the first step towards computing a depth map
consists of identifying a keyframe from the past image frames that
is suitable to perform stereo matching.
Next, the relative 6DoF pose between the keyframe and the cur-

rent frame is used to perform polar rectification. Stereo-rectification
is not a mandatory step, but it significantly speeds up stereo match-
ing by reducing the correspondence search to the same horizontal
lines in both images.

A very fast CRF solver is used to compute correspondences; wrong
estimates are discarded via an efficient machine learning based
solution, leading to disparity maps that are almost free of outliers.
From disparities, one can estimate a sparse depth map through
triangulation.

The sparse depth map is then fed into a novel variant of the fast-
bilateral solver [Barron and Poole 2016] that generates a bilateral
grid of depth (as opposed to a depth map). The bilateral grid can be
converted on-demand into a dense, spatio-temporal smooth depth
map. We do this by slicing the grid with the most recent available
image (as opposed to the frame used to populate the bilateral grid)
which ensures that the edges of the produced depth map are aligned
with the RGB image currently displayed on the smartphone.

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

193:4 • Valentin et al.

Live image Selected keyframe Rectified images

Keyframe
selection

DepthOcclusion rendering Latest viewfinder
imageLate-stage slicing

Keyframe pool

…

Planar Bilateral Solver

Matching +
Invalidation

AR
Assets

1

4
1

1 1

Dense Depth Map

On-demand late-stage rendering

Fig. 2. Depth from Motion pipeline. Dense depth map estimation (generation of the bilateral grid) and late stage rendering using the latest viewfinder image
(conversion of the bilateral grid into a dense, spatio-temporal smooth depth map) are running on different threads, allowing to provide depth with very low
latency.

The generation of the bilateral grid and the slicing are decoupled
and run on separate threads. Depth maps can therefore be gener-
ated at high frame-rate with very low latency, efficiently making it
independent of the run-time of the CRF inference, allowing deploy-
ment of our system on mid and high-end devices without sacrificing
quality or effective framerate.

Finally, high level applications can leverage this real-time depth-
estimation to enable effects such as AR occlusions, as shown in
Figure 1. Figure 2 illustrates the main steps of the above-described
pipeline, which we detail in the following sections.

4 KEYFRAME SELECTION
Our approach for depth estimation is based on stereo matching
between the most recent image and a past keyframe. The choice
of the keyframe is dependent on several disparate factors, each of
which contribute to the potential matching quality of a candidate
keyframe. For instance, greater depth accuracy is gained by increas-
ing the stereo baseline between the chosen keyframe and the present
position, but such frames are also further back in time, which can
introduce temporal inconsistencies.
Previous approaches for motion stereo often rely on keyframes

from a fixed time delay [Kim et al. 2016; Zhou et al. 2017]. This
method is robust when under constant movement, such as in a
vehicle, but usage for handheld devices results in sporadic uneven
motion. Other methods rely on feature or geometry tracking, rather
than matching correspondences to a specific frame [Karsch et al.

2016; Li et al. 2006], but these algorithms often result in sparse depth
or are unable to run at adequate framerates. [Pradeep et al. 2013]
select the optimal keyframe for stereo matching in terms of baseline
and image overlap. Finally, [Schönberger et al. 2016; Zheng et al.
2014] introduce notable techniques for pixel-wise view selection, but
these approaches are unfortunately computationally too demanding
for mobile scenarios.

In this paper, we define a soft-cost function to select the optimal
keyframe for the latest target frame using several metrics. We keep
a fixed-capacity pool of potential keyframes, with each newly cap-
tured frame being added to this pool if the 6-DoF visual-inertial
tracking is successful, replacing outdated frames. The cost metrics
we use to pick the best keyframe from the pool are:
• bi, j : The baseline distance in 3D between two frames i and j.
We want this value to be large.
• ai, j : The fractional overlap, in the range [0, 1], of the image
areas for the frames i and j , computed based on their viewing
frustums. We want to maximize this value.
• ei, j : The measured error of pose-tracking statistics for the
two frames. We want to keep this value small.

We use a multidimensional cost function to select a keyframe k
to pair with the latest reference image r , producing the minimum
total cost from the keyframe pool K :

argmin
k ∈K

ωb
br,k

+ ωa (1 − ar,k) + ωeer,k (1)

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:5

The choice of the weighting ωb for the baseline is relative to the
nominal desired baseline for the target scene depth. Choosing can-
didate frames based on a known baseline is a classic technique for
motion stereo [Jain et al. 1987; Nevatia 1976], but for modern mobile
systems this metric must also be weighted against other considera-
tions. In practice we set ωb = 0.4, with a strict limit of minimum
allowed baseline of 4 cm.

The cost term for area overlap ar,k is weighted heavily with ωa ,
since although successful matching can occur between frames with
only a partial overlap, greater overlap reduces the need of depth
values to be extrapolated to other parts of the target image. We set
ωa = 0.8, with a strict threshold of minimum allowed overlap at
40%.

If 6-DoFmotion tracking–e.g. ARKit or ARCore–produces a frame
that is measured to have poor confidence, then the frame is never
added to the keyframe pool at all. However, even candidate keyframes
with high confidence may have some relative error to the latest ref-
erence frame. This relative error cost is weighted against the other
costs with ωe . This weight is set at ωe = 0.5, with a strict thresh-
olds ensuring the measured velocity variance between the chosen
keyframe and the latest reference frame does not exceed 5×10−4 m/s,
as well as ensuring the measured acceleration bias does not exceed
0.2m/s2.
The above parameters were chosen by maximizing pixel-wise

depth error and minimizing the number of reported invalid pixels
across a set of test datasets. The choice of these weights improved
depth accuracy by about 10%. Now that a keyframe has been identi-
fied, we next perform stereo rectification.

5 STEREO RECTIFICATION
Given two cameras and their respective poses, one can estimate
the fundamental matrix [Hartley and Zisserman 2003] that governs
how pixels corresponding to the same 3D point are related. For two
corresponding pixels x and x ′ that come from the projection of a 3D
point X , and the fundamental matrix F , one can observe that x’ lies
on the line l ′ = Fx . The correspondence search is then constrained
to a one-dimensional problem. Once correspondences are estimated,
for instance using the matching algorithm described in Section 6,
the depth of any given pixel can be estimated through triangulation.

Due to the linear cache pre-fetch behavior of modern CPUs, it is
significantly more efficient to perform this 1-d search along hori-
zontal lines in images that are stereo-rectified. Such images have
the property that all epipolar lines are parallel to the horizontal
axis of the image. Standard dual-camera setups with a fixed base-
line have the advantage that at each frame, the captured images
are already close to be stereo-rectified. Mostly due to mechanical
imprecision, these images still need to be stereo-rectified in soft-
ware. For these setups, practitioners usually resort to using planar
rectification [Faugeras et al. 2001; Loop and Zhang 1999] due to
the availability of production-level public implementations [Bradski
and Kaehler 2000].

When dealing with a single camera that is freely moving, epipoles
can be anywhere on the image plane. In particular, when the user is
moving forward with their camera, the epipole is inside the image,
which causes traditional techniques such as planar rectification to

fail. In this paper, we aim at allowing users to freely move with their
mobile phones and opt for using the polar rectification technique
described in [Pollefeys et al. 1999].

5.1 Using polar rectified images for stereo matching.
In [Pollefeys et al. 1999], the authors describe an algorithm that,
given a pair of images and their relative pose, transforms these
images such that their epipolar lines are parallel and corresponding
epipolar lines have the same vertical coordinate. Also, for computa-
tional reasons described earlier, it is generally desired that for a point
(x ,y) in the left-rectified image, the correspondence lies at (x ′,y)
in the right-rectified image with x ′ < x and τmin < x − x ′ < τmax ,
with τmin a small constant, usually 0 or 1, and τmax the maximum
disparity, 40 in our case. [Pollefeys et al. 1999] does not describe
how to obtain rectified images for which corresponding pixels lie
in a fixed disparity range. Conversely, we propose a solution that
constrains solutions to a known disparity interval which can be
efficiently exploited while estimating correspondences.

Estimating image-flip. As illustrated in Figure 3, some camera con-
figurations can lead to rectified images that, modulo disparity, are
flipped version of each other. These configurations break the re-
quirement of x ′ < x . These cases are detected when the dot products
between the ray through the optical centers and their respective
image center in world coordinates, and the vector that links both
optical centers, have opposite signs. In that case, one of the images
needs to be flipped.

Fig. 3. Image flip. Notice how the configuration of the input images (top)
lead to rectified images that are flipped versions of each other. Indeed, in
the bottom left image, the red circle is on the left side of the yellow circle,
where the situation is flipped in the bottom right image.

Estimating image-swap and x-shift. As mentioned earlier, efficient
stereo matching assumes that all correspondences reside in a pre-
defined range of disparity values [τmin ,τmax], with τmin > 0. This
assumption can be violated with negative disparities, illustrated in
Figure 4, or disparities that exceed the maximum disparity assumed
by the stereo-matcher. We therefore apply a shift to bring disparities
into a valid range.

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

193:6 • Valentin et al.

First, given the relative transform between the two frames and a
pre-defined range of depth values [Dmin ,Dmax] the system is ex-
pected to handle, we estimate [τ Lmin ;τ Lmax] and [τRmin ;τRmax]. These
intervals correspond to the disparity ranges required to make pre-
dictions if the left or right image is used as reference, respectively.
We then select the reference image and the amount of horizontal
shift required to fit in the expected disparity range [τmin ,τmax]

based on which configuration requires the smallest shift and on
the sign of the estimated disparities. In the event that the expected
range of disparities is too small to accommodate the current pair,
one can re-size the rectified images accordingly.

Fig. 4. Horizontal shift. In this configuration, we have ∆fg = 4, ∆bg = -3.
Efficient stereo-matchers assume that candidate disparities range between
0 and a pre-defined maximum disparity. By default, this assumption can be
violated when using polar-rectified images.

Improving horizontal resolution for higher quality stereo-matching
results. When operating on textured scenes, standard techniques
like PatchMatch Stereo [Bleyer et al. 2011] or HashMatch [Fanello
et al. 2017a] have a very similar sub-pixel accuracy around 0.2 pixels.
By default, the rectified images can be significantly bigger that the
original image, which is not a desirable property for computational
reasons. A naive strategy would be to re-size the rectified images
to the original resolution, which can lead to rectified images with a
width smaller than it could be, directly impacting depth-accuracy
due to the fixed sub-pixel accuracy described above. Hence, to in-
crease depth-accuracy, we propose to re-size the rectified images
such that the size of [τmin ;τmax] matches the maximum expected
number of disparities (40 in our case), while keeping the total num-
ber of pixels constant.

Accounting for some pose uncertainty. Most imprecision in the rela-
tive transform between the two images lead to gross rectification
problems. In practice, systems like ARCore only suffer from minor
pose imprecision. When the epipoles are ‘far’ from the images, some
small pose imprecision lead to imprecision in the position of the
epipole, which in turn can lead in solving for both negative and
positive disparities. We found that setting τmin between [5, 10] as
opposed to 0 or 1 effectively combats small pose inaccuracies. When

the epipole(s) are located within the image, we preemptively invali-
date a disk of pixels located around the epipole. In our system the
radius of this disk is 20 pixels.
At this stage, regardless of the trajectory that the smartphone

has followed, we have a rectified pair of images. The next section
addresses performing stereo-matching on these rectified images.

6 STEREO-MATCHING
Recent works [Fanello et al. 2017b] and [Fanello et al. 2017a] have
demonstrated high-resolution stereo-depth estimation respectively
at 500Hz and 1000Hz on a high end GPU. In the following, we briefly
describe the paradigm on which these techniques are based on.

Assuming the likelihood of solutions are well captured by a con-
ditional probability from the exponential family

P(Y |D) =
1

Z (D)
e−E(Y |D), (2)

practitioners often favor a factorization of the form

E(Y |D) =
∑
i
ψu (yi = li) +

∑
i

∑
j ∈Ni

ψp (yi = li ,yj = lj) (3)

which is usually referred to as a pairwise-CRF. HereY := {y1 . . .yn }
is the set of latent variables associated to pixels {x1 . . . xn }. Each
yi ∈ Y can take values in L, which is a subset of R and correspond-
ing to disparities. Finally, Ni is the set of pixels adjacent to pixel
i . Although NP-hard to solve in general [Boykov et al. 2001], this
decomposition has been widely used for numerous computer vision
tasks. The termψu is usually referred to as the unary potential, and
in the context of depth estimation via stereo matching, measures
the likelihood that two pixels are in correspondence. The function
ψp is commonly referred to as the pairwise potential and acts as a
regularizer that encourages piece-wise smooth solutions. The com-
ponents that make the minimization costly are evaluatingψu and
the number of steps that the chosen optimizer takes to converge to
good solutions. In this work, we use the unary potential described in
[Fanello et al. 2017a] for its low-computational requirements, a trun-
cated linear pairwise potential as pairwise potential. We optimize
this cost function using a hybrid of PatchMatch [Barnes et al. 2009]
and HashMatch [Fanello et al. 2017a] that is particularly efficient
on CPU architectures, which we introduce below.

6.1 Vectorized Inference
The basic idea of CRF inference using PatchMatch [Barnes et al.
2009] is to propagate good labels to neighboring pixels, exploiting
local smoothness of solutions. Different propagation/update strate-
gies have been explored in the literature, some of them designed for
GPU architectures [Bailer et al. 2012; Fanello et al. 2017a; Pradeep
et al. 2013].
In this section, we introduce a propagation strategy that is tai-

lored for modern CPU instruction sets that rely on Single Instruction
Multiple Data (SIMD) instructions to achieve intra-register paral-
lelism and improved throughput. Achieving high performance on
such architectures, mainly ARM NEON for mobile devices, requires
efficient utilization of these vector registers. In particular, loading
data from memory benefits from use of coherent loads - that is, for
a vector register with n lanes of width b bits, SIMD instruction set

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:7

architectures (ISAs) typically offer an instruction that loads n ∗ b
sequential bits, filling all lanes with one instruction. The counter-
part is a diverged load, where each lane of the vector register is
inserted into the vector register one at a time. Such diverged loads
are required when the memory to be loaded is not sequential. This
behavior poses a challenge to stereo algorithms, which typically
samples diverged offsets per pixel when exploring the solution space.
To make matters worse, this data parallelism is inherently direc-
tional. For typical image layouts in memory, a vector register of
pixels represents a subset of a particular image row, which prevents
typical inference schemes (e.g. PatchMatch) from mapping well to
SIMD architectures. The propagation of information horizontally in
the image prevents efficient utilization of vector registers.
Recently, [Fanello et al. 2017a] has demonstrated an inference

technique that allows updates to each pixel in parallel, allowing
depth map prediction at 1000Hz on GPU. Compared to PatchMatch,
HashMatch requires more iterations for information to propagate
further in the image, but each iteration is substantially cheaper and
can be performed independently. PatchMatch, by contrast, is com-
pletely sequential in nature: it iteratively goes from one pixel to the
next, evaluates some particle/solutions for that pixel, and continues
until reaching the end of the image. Motivated by the strengths of
each approach, we propose a hybrid variant that is well-suited for
SIMD architectures. Instead of performing multiple independent
propagation passes for each of the eight directions, we perform k
passes in sequence, each designed to utilize the data-parallelism of
the underlying vector architecture. For typical scenes, k ranging
from 2 to 4 is sufficient. During even-numbered passes, each pixel
considers hypotheses from the three neighbors above it (that is,
the pixel at (x ,y) considers hypotheses from (x − 1,y − 1), (x ,y −
1), (x + 1,y − 1)) in addition to the currently stored hypothesis. Dur-
ing odd-numbered passes, each pixel considers hypotheses from
the three neighbors below it in addition to the currently stored
hypothesis. Rows are processed sequentially, starting at the top of
the image in even-numbered passes and the bottom of the image in
odd-numbered passes. Consequently, all pixels for a given row are
independent of all other pixels in the same row, allowing parallel
processing. Is is important to note that NEON acceleration in the
inference step is possible due to breaking of dependency chains in
the X direction (rows). The reason for this is that vector units of
SIMD processors load data in chunks along the X direction, and
hence they are more efficient at vectorizing operations on pixels at
discrete Y values. As is standard for such inference strategies, we
evaluate each hypothesis by summing the stereo matching unary
cost and a weighted smoothness term, the aforementioned trun-
cated linear pairwise potential. The unary cost evaluation cannot
be fully parallelized due to the distinct disparity value in each lane
of the vector register. However, we can fully parallelize the rest of
the data movement: the load of initial disparity values, the load of
neighboring disparity values, and the smoothness cost computation.
Overall, the proposed approach has been consistently measured as
4x faster than HashMatch and 10x faster than PatchMatch.

Fig. 5. The proposed factorization makes any pixel belonging to a given
horizontal line (e.g. green pixels) to be independent to each other. If we now
focus on pixel p , one can update it’s prediction by evaluating the particle
currently at p , and the particles in the neighbors of p (black link); the
updated solution is the particle that minimizes this local CRF. Best viewed
in color.

6.2 Invalidation
The approximate MAP inference performed over the pairwise con-
ditional random field yields one disparity value estimated for each
pixel in the image. Unfortunately, when the scene lacks texture (e.g.
white wall in Figure 7, second line) or contains repetitive patterns,
the MAP solution of the corresponding pixels can be wrong. It is usu-
ally preferred to invalidate such pixels since the distribution of their
errors depends on image content, and hence estimating the MLE of
these distributions is non-trivial (e.g. to be used in KinectFusion-like
filtering). Invalidation is usually performed using thresholding on
the unary cost of the solution [Fanello et al. 2017b; Mühlmann et al.
2002], using left-right consistency check [Mühlmann et al. 2002;
Scharstein and Szeliski 2002], using connected component analysis
[Fanello et al. 2017b], or a combination of the above. Performing a
left-right consistency check leads to good invalidation results, but
involves computing a disparity map for each image, which adds a
significant computational cost to the pipeline.

(a) (b) (c)

Fig. 6. CRF-cost invalidation in disparity space. (a): Rectified image. (b):
Raw output from the matcher. (c): CRF-cost invalidation.

By breaking the whole CRF in cliques containing each pixel and
their immediate neighbours, one can compute the negative log-
likelihood Li using:

Li = ψu (li) +
∑
j ∈Ni

ψp (li , lj) (4)

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

193:8 • Valentin et al.

(a) (b) (c)

Fig. 7. Connected component invalidation in disparity space. (a): Rectified
image. (b): CRF-cost invalidation. (c): Connected component invalidation.

This formulation leads to slightly better invalidation results than
only considering the unary potential. As can be observed in Figure 6,
pruning unlikely solutions removes a large portion of undesirable
pixels. Unfortunately, in the case of untextured regions, the like-
lihood of solutions can be high yet incorrect. Following prior art
[Fanello et al. 2017b], we invalidate small connected components
in disparity space. The resulting depth map is free from the vast
majority of unstable predictions, as can be observed in Figure 7.
Depending on the compute architecture, running this last invalida-
tion step can become as expensive as solving the CRF described in
Equation 3. We approximate the connected component invalidation
step using a single decision tree to minimize the computational
resources required [Criminisi et al. 2012]. In particular, we model
this invalidation step as a classification problem, where we assign to
valid pixels a positive label y = 1 and for invalid pixel a label y = −1.
In the context of predicting the confidence of time of flight, the
authors of [Reynolds et al. 2011] also propose to use Random Forest.
Unfortunately, their approach runs in 5s on 200 × 200 frames. For
the sake of completeness, we briefly describe the training procedure
for decision trees. A decision tree consists of split nodes and leaves.
Each split node n stores a ‘weak learner’ that is parameterized by
function parameters θn and a scalar threshold τn . To perform infer-
ence over the tree for pixel p, one starts at the root of the tree and
evaluates:

s(p,n) = 1[f (p,θn) > τn], (5)

If s(p,n) evaluates to 0, the inference continues over the left children
of noden, and over the right children otherwise. This process repeats
until reaching a leaf, which contains a binary probability distribution
over the prediction space, invalidation in this case.

As it is common practice, we chose f to be a dot product between
the values of two pixel indices located around p. The values of θn
and τn are greedily optimized to maximize the information gain:

IG(θn ,τn) = E(S) −
∑

c ∈L,R

|Sc |

|S|
E(Sd), (6)

with E the Shannon entropy, L,R the left and right children of node
n. Finally, each leaf stores the probability for a pixel to be valid or
invalid.

At test time, inference over that tree is performed for each pixel,
allowing to decide which pixels should be invalidated.

6.3 Disparity to depth
Now that we have an outlier-free disparity map, we can finally
infer depth. When one uses planar rectification, given a disparity
d , a baseline b, and a focal length f , the depth Z can be trivially
computed as Z = bf

d . However, this closed form solution cannot be
used in the case of polar rectification.

A well known solution in literature to deal with these cases is the
optimal triangulation method proposed in paragraph 12.2 of [Hart-
ley and Sturm 1997]. Optimal triangulation requires minimizing a
polynomial of degree 6, which could be inefficient on mobile archi-
tectures. Therefore we resort to solving the simpler linear problem
described in [Hartley and Zisserman 2003], which is not optimal
but fast to solve.

7 BILATERAL SOLVER EXTENSIONS
The previous sections describe how to obtain depth maps with few
false positives. However, these depth maps are sparse (containing
information only in textured regions), temporally inconsistent, and
are not aligned with the edges in the image. In this section we use a
novel extension of the bilateral solver to efficiently generate dense,
temporally stable, and edge aligned depth maps with low latency.
Before modifying the bilateral solver, we first review it as it has

been previously described in the literature. We build upon the “hard-
ware friendly” variant of the solver as presented in [Mazumdar et al.
2017], which is built upon the original bilateral solver as described in
[Barron and Poole 2016], which itself builds upon the optimization
approach of [Barron et al. 2015].
The bilateral solver is defined as an optimization problem with

respect to a “reference” image r (in our case, a grayscale image from
the camera), a “target” image t of noisy observed values (in our case,
a noisy depth map as computed in Section 6), and a “confidence”
image c (in our case, the inverse of the invalidation mask as defined
in Section 6.2). The solver recovers an “output” image x that is close
to the target where the confidence is large while being maximally
smooth with respect to the edges in the reference image, by solving
the following optimization problem.

minimize
x

λ

2

∑
i, j

Ŵi, j
(
xi − x j

)2
+
∑
i
ci (xi − ti)

2 (7)

The first term encourages that all pairs of pixels (i, j) to be smooth
according to the bilateral affinity matrix Ŵi, j and the smoothness
parameter λ (set to 4 in our experiments), while the second term
encourages each xi to be close to each ti when ci is large. The
Ŵ matrix is a bistochastic version of a bilateral affinity matrix W,
where eachWi, j is defined as:

Wi, j = exp
©«−

(
pxi − p

x
j

)2
+
(
p
y
i − p

y
j

)2

2σ 2
xy

−

(
ri − r j

)2
2σ 2

r

ª®®¬ (8)

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:9

where for each pixel i , (pxi ,p
y
i) is its (x ,y) location and ri is its

grayscale intensity in our reference image r. These spatial and in-
tensity dimensions are modulated by bandwidth parameters σxy
and σr , which we both set to 16 in our experiments.
As shown in [Barron and Poole 2016], the large and dense bis-

tochastic bilateral affinity matrix can be represented with a compact
factorization using a bilateral grid:

Ŵ = ST diag
(n

m

)
B diag

(n
m

)
S (9)

Where the S and ST matrices splat and slice into a bilateral grid
respectively, B is a [1, 2, 1] blur along the three dimensions of a bi-
lateral grid, and vectors m and n induce a normalization that results
in Ŵ being approximately bistochastic (we use the normalization
of [Mazumdar et al. 2017]). With this factorization we can perform
a variable substitution from pixel-space into “bilateral-space”:

x = STy (10)

where y contains values for each bilateral grid vertex and x contains
values for each pixel. Assuming the σ∗ parameters are not small, y
will be substantially smaller than x. We turn the expensive pixel-
space optimization problem in Equation 7 into a tractable bilateral-
space optimization problem:

minimize
y

1
2

yTAy − bTy + c (11)

A = λ(diag(m) − diag(n)B diag(n)) + diag(Sc)

b = S(c ◦ t) c =
1
2
(c ◦ t)Tt

where y is the solution to the problem in bilateral-space, and ◦
denotes a Hadamard product. Solving this problem simply requires
solving a sparse linear system and undoing our variable substitution:

x̂ = ST(A−1b) (12)

Following [Mazumdar et al. 2017], we solve this sparse linear system
using preconditioned heavy ball optimization, which produces simi-
lar results to the preconditioned conjugate gradient used in [Barron
and Poole 2016] while being better suited to a fast implementation.
The bilateral solver as previously described is capable of pro-

ducing edge-aware smooth depth maps from noisy or incomplete
inputs and can be made to produce real-time results running on a
mobile CPU. In the following sections we describe a number of im-
provements to the solver. First, we generalize the solver (or indeed
any linear smoothing operator) to produce output that is smooth
in a coplanar sense, rather than smooth in a fronto-parallel sense.
This formulation results in significantly improved output on scenes
containing foreshortened planes (walls, floors, etc.), which are com-
mon in photographic and AR contexts. Second, we present a simple
and cheap method for inducing real-time temporal consistency in
the solver, as well as an approach for “warm starting” multiple in-
stances of a solver that improves convergence rates in a real-time
/ video-processing context. Third, we demonstrate that the solver
can be used for “late stage” slicing, in which we use a bilateral grid
computed from earlier stereo inputs to produce edge-aware depth
maps from the most recent viewfinder frame. The result is extremely
low-latency output that is still edge-aware.

7.1 Planar Bilateral Solver
The bilateral solver produces a per-pixel labeling that, along with a
data term, minimizes the squared distances between pixels that are
spatially nearby and have similar colors or grayscale intensities. The
output of the solver (ignoring the data term) is therefore an image
containing a single constant value, which in a stereo context means
that the solver is strongly biased towards producing fronto-parallel
depth maps. This bias is problematic, as real-world environments
frequently contain surfaces that are smooth or flat but not fronto-
parallel, such as floors, walls, and ceilings. For an illustration of how
this can be problematic, see Figure 8, which shows that the regular
bilateral solver’s output may be dramatically incorrect in the pres-
ence of flat but not fronto-parallel surfaces, causing foreshortened
surfaces to be erroneously recovered as “billboard”-like flat surfaces
oriented perpendicularly to the camera.
This fronto-parallel bias in depth estimation has been noted in

the literature. [Woodford et al. 2009] and [Zhang et al. 2014] address
this issue using specialized optimization algorithms designed to
recover depth maps that minimize second-order variation, rather
than first-order variation. These approaches work well, but are too
expensive for real-time use and do not appear to be amenable to fast
bilateral-space optimization. [Furukawa et al. 2009] present a stereo
pipeline built around the assumption that the world is “Manhattan-
like”, but this rigid assumption hurts performance in the many cases
that do not obey this strong assumption of co-planarity, such as
human subjects or the natural (not man-made) world. The trilateral
filter of [Choudhury and Tumblin 2005] modifies a bilateral filter
to produce piece-wise linear output, but this approach does not
provide a way to similarly modify the bilateral solver.

Our approach is to simply embed the bilateral solver in a per-pixel
plane-fitting algorithm, such that the minimal-first-order-variation
assumption of the bilateral solver causes the final output of our
algorithm to have low second-order variation. Local plane-fitting
is well studied in the literature [Klasing et al. 2009; Wang et al.
2001], usually under the assumption that the spatial support of each
plane fit is limited. By using the bilateral solver as the engine for
aggregating plane-fit information, we can perform global and edge-
aware plane-fitting. This causes our recovered depth map to not be
confounded by foreshortened surfaces, as it can explain away such
surfaces as simply being slanted planes.
Our approach, which we dub the “planar bilateral solver”, fits a

plane to each pixel in the image in a moving least squares context,
where the interpolator in each pixel’s least-squares fit is the output of
a bilateral solver. Implicitly we construct a 3D linear system at every
pixel, in which the left and right hand sides of each linear system use
the bilateral solver to compute the “scatter” matrix used in standard
plane fitting. This approach is in no way dependent on any property
of the bilateral solver except that the solver is a linear filter whose
weights are always non-negative, and so we describe this plane-
fitting procedure in completely general terms. Because the math for
plane-fitting is tedious and well-understood, for the sake of brevity
and reproducibility we describe this “planar filtering” approach
primarily using pseudo-code, in Algorithm 1. This planar_filter(·)
operator takes as input some image Z to be filtered (in our case a
depth map), some non-negative filtering operator filter(·) (in our

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

193:10 • Valentin et al.

(a) Input image and cropped+rectified region (b) Raw point cloud (c) Bilateral solver (d) Our planar bilateral solver

Fig. 8. Here we demonstrate the efficacy of our planar bilateral solver. In (a) we have two input images from our pipeline showing common indoor environments.
In (b) we have a raw point cloud from stereo matching, visualized from a different angle than the camera. In (c) we have the output of the standard bilateral
solver, which produces reasonable results when surfaces happen to be fronto-parallel (ie, on the wall in the top image) but exhibits significant artifacts when
this fronto-parallel bias is incorrect. In (d) we see that our planar bilateral solver resolves these issues and produces significantly improved output, in which
the heavily foreshortened walls and floor are more accurately recovered.

case a bilateral solver), and some regularization parameter ϵ . This
algorithm filters the outer product of (x ,y,Z , 1) with itself, which
gives us the left- and right-hand sides of a linear system at each
pixel that we represent as a 6-channel imageA and 3-channel image
b (x and y are the coordinates of each pixel, 1 is an image of all 1’s,
◦ is the Hadamard product, and / is element-wise division). With
these images we can solve the linear system at each pixel in parallel
using an LDL decomposition (which we found to be more stable
than other options we explored). Pseudo-code for this per-pixel
solve can be found in Algorithm 2. In our pseudo-code we recover
Zz , the constant offset of each pixel’s plane fit, which we use as the
output depth at each pixel. Our pseudo-code also computes (Zx ,Zy),
the gradient of Zz at each pixel, which we do not use in this work.

The parameter ϵ biases the output of planar filtering to be fronto-
parallel, by imposing Tikhonov regularization on the gradient of the
recovered surface. As ϵ approaches∞ the output of planar_filter(·)
exactly approaches the output of filter(·). The standard bilateral
solver can therefore be viewed as a planar bilateral solver that has
been heavily regularized to produce maximally fronto-parallel out-
put — further demonstrating the standard bilateral solver’s fronto-
parallel bias. We set ϵ = 1 in our experiments.

Because a planar filter requires calling filter(·) 9 times, and be-
cause calling this filter is significantly more expensive than perform-
ing element-wise per-pixel math, applying a planar bilateral solver
is roughly 9× more expensive than applying a standard bilateral
solver. This can be reduced somewhat by noting that filter(1) = 1,
and by calculating the other 8 bilateral solver instances in parallel
which allows for easy vectorization. The next section will demon-
strate that, in practice, the planar solver benefits substantially from
temporal warm-start initialization, thereby giving it runtimes that
are not much more than those of the regular bilateral solver.

7.2 Temporal Smoothness, Warm-Start Initialization, and
Late-Stage Slicing

To produce a compelling user experience, the depth maps produced
by our system must be smooth over time. This goal of temporal
consistency is somewhat at odds with our need for responsive, low-
latency output that is tightly aligned to the edges of the current
viewfinder frame. In this section, we present a simple and effective
method for the bilateral solver and planar bilateral solver to produce
high quality, temporally consistent real-time results.

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:11

Algorithm 1 planar_filter(Z ,filter(·), ϵ)
Input: Some image to be filtered Z , some linear averaging filter
filter(·), and some non-negative regularization parameter ϵ .
Output: A three channel image of per-pixel plane fits (Zx ,Zy ,Zz).

1: [F1, Fx , Fy , Fz , Fxx , Fxy , Fxz , Fyy , Fyz]
← map(filter(·), [1,x ,y,Z ,x ◦ x ,x ◦ y,x ◦ Z ,y ◦ y,y ◦ Z])

2: A1,1 ← F1 ◦ y ◦ y − 2(y ◦ Fy) + Fyy + ϵ2

3: A1,2 ← F1 ◦ y ◦ x − x ◦ Fy − y ◦ Fx + Fxy
4: A2,2 ← F1 ◦ x ◦ x − 2(x ◦ Fx) + Fxx + ϵ2

5: A1,3 ← F1 ◦ y − Fy
6: A2,3 ← F1 ◦ x − Fx
7: A3,3 ← F1 + ϵ2

8: b1 ← Fz ◦ y − Fyz
9: b2 ← Fz ◦ x − Fxz
10: b3 ← Fz
11: (Zx ,Zy ,Zz) ← solve_image_ldl3(A,b)

Algorithm 2 solve_image_ldl3(A,b)
Input: A 6-channel image A and a 3-channel image b, where chan-
nels in A correspond to the upper triangular part of a 3 × 3 matrix.
Output:A three-channel image x where for each pixel i in the input
linear system, x(i) = A(i)\b(i) using an LDL decomposition.
1: d1 = A1,1
2: L1,2 = A1,2/d1
3: d2 = A2,2 − L1,2 ◦A1,2
4: L1,3 = A1,3/d1
5: L2,3 = (A2,3 − L1,3 ◦A1,2)/d2
6: d3 = A3,3 − L1,3 ◦A1,3 − L2,3 ◦ L2,3 ◦ d2
7: y1 = b1
8: y2 = b2 − L1,2 ◦ y1
9: y3 = b3 − L1,3 ◦ y1 − L2,3 ◦ y2
10: x3 = y3/d3
11: x2 = y2/d2 − L2,3 ◦ x3
12: x1 = y1/d1 − L1,2 ◦ x2 − L1,3 ◦ x3

Temporally consistency using a bilateral solver has been previ-
ously accomplished in [Anderson et al. 2016], who appended an
extra “temporal” dimension to a bilateral solver and solved for the
per-pixel depth labeling for an entire video sequence using one
instance of the solver. This method produces high-quality results,
but is not applicable to our real-time use-case where frames must
be processed as they are acquired. We therefore use a causal IIR-like
approach to temporal smoothness, in which we track a single bilat-
eral grid of estimated depths, and repeatedly update this bilateral
grid using the output of a single-image bilateral solver instance
on each incoming frame. This approach can run in real-time, and
allows us to use “late stage” slicing to produce extremely low la-
tency edge-aware output — a critical feature in augmented reality
applications.

As reviewed in Section 7, the baseline single-image bilateral solver
estimates a depthmap by implicitly constructing and solving a linear
system A−1b in bilateral space, and then using a “slice” matrix ST

to produce a per-pixel labeling x̂:

x̂← ST(A−1b) (13)

In our temporally consistent solution, we track an exponential mov-
ing average of a bilateral grid of depths ȳ, which we initialize to 0.
For each input image t , we solve for the current frame’s bilateral
grid of depths ŷt by solving a linear system A−1

t bt , and then update
ȳ using exponential decay. We slice from that averaged bilateral
grid to produce a per-pixel depth estimate. The exact update applied
at frame t is:

ŷt ← A−1
t bt

ȳ ← α blur (ȳ) + (1 − α)ŷt

x̂t ← ST
t

(ȳ
1 − α t

)
(14)

where α is a parameter that controls how much temporal smooth-
ness is encouraged, blur(·) applies a normalized [1, 4, 6, 4, 1] blur
along the three dimensions of the bilateral grid of ȳ, and the division
by (1 − α t) serves to “unbias” our moving average estimate of ȳ.
The blur(·) operator diffuses information spatially between frames,
which appears to help, and the linear interpolation according to α
diffuses that same information temporally.
Tracking a small bilateral grid of depths instead of a large per-

pixel depth map has an obvious speed advantage, as each frame’s
update requires significantly less compute. However, tracking and
blurring a bilateral grid of depths in this manner instead of track-
ing a depth map also means that our temporal smoothing method
is invariant to small camera or scene motion, without the need
to explicitly estimate per-pixel motion between frames. Similarly,
tracking depth in bilateral-space allows for us to produce extremely
low-latency edge-aware depth estimates through a process we call
“late-stage slicing”: after updating ȳ, if the viewfinder frame has
changed we use the new frame to construct ST

t and slice out a
per-pixel depth labeling. Since slicing is significantly faster than
solving, this approach lets us produce per-pixel depth maps that are
exactly aligned to the current viewfinder frame, thereby enabling
compelling and responsive visual effects. This late-stage slicing ap-
proach also allows our algorithm to degrade gracefully on low end
mobile devices where our per-frame depth estimation may take
longer than the 17 or 33 milliseconds between frames. This method
is similar in spirit to the “time warp” approach used in some VR
applications [Van Waveren 2016], though our technique uses just
raw pixel intensities instead of geometric tracking information.

Our temporal smoothing approach enables another acceleration,
in which we “warm start” each frame’s bilateral solver instance by
initializing the bilateral grid being solved for via gradient descent
using the previous frame’s solution. Since adjacent frames have
similar image content, except in the presence of extreme motion, so
this approach significantly improves convergence and allows for
fewer gradient descent iterations in all but the first frame, as we
demonstrate in Section 9.3.

Our temporal consistency approach generalizes straightforwardly
from the regular bilateral solver to our planar bilateral solver. We
apply temporal consistency to the linear systems describing the
per-pixel plane fits before the LDL solve step, which produces better
results than applying a temporal filter to the estimated depth at each

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

193:12 • Valentin et al.

frame. Our late-stage slicing also includes a late-stage per-pixel LDL
solve, which increases runtimes slightly, but not enough to preclude
real-time performance.

8 EVALUATION
In this section we perform exhaustive evaluations of the entire
pipeline. We stress the system in various scenarios, reporting quan-
titative comparisons on standard benchmarks as well as qualitative
comparisons with state of the art methods. We start the evaluation
by testing our framework on the Middlebury Stereo Dataset V3
[Scharstein et al. 2014], showing that our sparse matcher is among
the top performers on the benchmarks and the full system is on par
with fast real-time stereo matching approaches. We then compare
with deep learning based solutions on challenging scenes and finally
show how the method performs favorably compared to the state of
the art in the mobile industry (iPhoneX).

8.1 Stereo-Matcher Evaluation on Middlebury Dataset
We here quantitatively compare our stereo matching approach to
other local state-of-the-art algorithms on the Middlebury Stereo
Dataset V3 [Scharstein et al. 2014]. We submitted the results on
the Middlebury benchmark1. Our proposed sparse stereo matching
with invalidation step (Section 6.2) is among the top performers on
the sparse benchmark for multiple reported metrics. The output
of the sparse matching is indeed accurate and could be potentially
used for reconstruction tasks.
On the dense benchmark, the proposed method performs very

well in comparison to other fast methods such as the Intel R200 algo-
rithm that requires a custom ASIC. Given computational constraints
available on mobile platforms, it is expected that offline techniques
such as [Taniai et al. 2018] are able to provide more accurate results.
However, we want to point out that the goal of the densification step
is to produce edge aligned depth maps for occlusion handling rather
than minimizing average depth error. This means that, for the task
at hand, we can tolerate some imprecision in the predicted depth,
but we are sensitive to small edge misalignment. Therefore, these
standard metrics are not well suited to evaluate what our algorithm
is designed for.
In Table 1 we report the results using the bad 2.0 error, which is

the standard metric for this dataset and computes the percentage
of pixels with error greater than 2 disparities. As representative
competitors, we picked the Intel R200 algorithm, which is based also
on binary descriptors followed by a more sophisticated optimization
scheme that uses Semi-Global Matching (SGM) [Hirschmuller 2008];
and the current state-of-the-art on this dataset, LocalExp [Taniai
et al. 2018], which uses a combination of deep features together
with a PatchMatch-like scheme with 3D slanted support windows.
As shown in the table, our method beats the Intel R200 and as ex-
pected is far from the state-of-the-art given the strict computational
resources available on mobile platforms.

Table 1. Quantitative results (bad 2.0) on Middlebury Dataset V3 (dense).
It is interesting to note that we get slightly better results than the fast
Intel R200 method which uses semi-global matching. The state-of-the-art,
LocalExp [Taniai et al. 2018], requires computational resources that are
significantly exceeding what is available on mobile platforms.

A
us
tr

A
us
tr
P

Bi
cy
c2

Cl
as
s

Cl
as
sE

Co
m
pu

Cr
us
a

Cr
us
aP

D
je
m
b

D
je
m
bL

H
oo

ps

Li
vg
rm

N
ku

ba

Pl
an
ts

St
ai
rs

Av
er
ag
e

Intel R200 70.5 14.4 21.3 37.7 72.2 38.1 53.2 31.4 18.3 52.4 52.6 44.1 45.4 50.7 66.5 40.9
LocalExp 3.65 2.87 2.98 1.99 5.59 3.37 3.48 3.35 2.05 10.3 9.75 8.57 14.4 5.4 9.55 5.43
Ours 67.6 25.0 29.2 40.9 57.3 35.5 57.5 40.4 19.9 42.8 52.6 39.8 37.1 51.7 34.9 40.4

Fig. 9. Comparison to deep neural networks. Even computationally expen-
sive networks fail to produce a valid temporally consistent depth map of
the scene. The monocular method of [Godard et al. 2017], for which they
offer a version fine-tuned on indoor scenes from the NYU Depth dataset
[Silberman et al. 2012]. The line artifacts in [Kendall et al. 2017] are due to
the re-projection of disparity images to the un-rectified image. Note that
both baselines have not been fine-tuned on our data, hence we present them
here for illustration purposes.

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:13

8.2 Qualitative Comparisons with Deep Learning solutions
In this section we compare the method with deep learning based
state-of-the-art solutions. Recent work relies on complex deep ar-
chitectures to infer depth from single images [Eigen et al. 2014;
Godard et al. 2017; Laina et al. 2016] as well as stereo configurations
[Kendall et al. 2017; Khamis et al. 2018; Pang et al. 2017]. In Figure 9
we show the comparisons of our method with two recent methods
for monocular [Godard et al. 2017] and stereo [Kendall et al. 2017],
respectively. Notice that the monocular method of [Godard et al.
2017] is fine-tuned on indoor scenes from the NYU Depth dataset
[Silberman et al. 2012]. Despite this, it suffers from gross errors on
these challenging scenes. The two-view method of [Kendall et al.
2017] is instead more robust and produces reasonable results even
in textureless regions. However both the competitors fail to produce
temporally consistent depth maps of the scene. In contrast, our algo-
rithm is more robust to temporal changes and does not completely
fail in textureless areas. We want to point out that our RGB data is
different (e.g. resolution) compared to the RGB data these baselines
have been trained with. Fine-tuning these baselines on that data
could lead to some quality improvement, but is unlikely to address
gross errors and the temporal instability of predictions.

8.3 Qualitative Comparisons with the iPhoneX
The iPhoneX is the latest generation of Apple smartphones. On the
back, the iPhoneX possesses two cameras that have different focal
length. Using this stereo pair, the iPhoneX computes 320×240 depth
maps at 24Hz. In contrast to a wide range of mid-level smartphones
iPhoneX has access to far more powerful computational resources.
Given that the iPhoneX can leverage a rigid camera setup and at
least one zoomed camera, one would expect their results to be more
precise and more stable than ours. In general, the iPhoneX provides
good results on well-texture environments, but does not manage to
reasonably handle harder cases as can be observed in Figure 10. Side
by side video comparisons are available in the supplementary mate-
rials, in which one can observe that the proposed system provides
depth maps that are much more temporally stable.

9 ABLATION STUDY
In this section, we evaluate the contribution of each component of
the pipeline through quantitative and qualitative experiments.

9.1 Invalidation Experiments
To evaluate the accuracy of the invalidation reached by the pro-
posed machine learning solution, we acquired 10000 stereo frames
of indoor scenes: we use 8000 frames for training and 2000 frames
for testing. For each frame, we produce sparse disparity maps as
described in Section 6 and perform an initial invalidation using the
CRF cost as detailed in Section 6.2. We then generate ‘ground-truth’,
outlier-free disparity maps, running an offline connected component
analysis that removes regions smaller than 300 pixels. Examples of
input and generated groundtruth pairs can be observed in Figure 7.
We then train a decision tree using the procedure described in Sec-
tion 6.2. The proposed machine learning based invalidation scheme
reaches an accuracy of 93% for a tree of depth 7 compared to the
1See “MotionStereo” entry on the official dataset website.

Fig. 10. Qualitative comparison with the iPhoneX. For these experiments,
we placed the iPhoneX and a Pixel 2 closely together with the iPhoneX
on the right, and the Pixel 2 equipped with the proposed solution on the
left. The iPhoneX struggles at providing useful data in low-textured regions.
Note that the Pixel 2 is less powerful compared to the iPhoneX.

‘ground-truth’ generated by a connected component analysis. As
shown in Figure 11, the accuracy rapidly improves until a tree depth
of 7, after which the gains become marginal. At this tree depth,
the proposed solution is 85% faster than the connected component
analysis. We note that the main differences between connected com-
ponent invalidation, and tree-based invalidation, appear when the
size of regions fall right below the hand-defined threshold (300), as
illustrated in Figure 12.

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

http://vision.middlebury.edu/stereo/eval3/

193:14 • Valentin et al.

Fig. 11. Accuracy of the proposed machine learning invalidation. Notice
how the accuracy rapidly increases up until a tree depth of 7, after which
each level of the tree only marginally improves results.

Fig. 12. Largest difference (14%) between connected component based inval-
idation and the proposed tree-based invalidation in the test set. (a) rectified
image, (b) disparity after crf-cost invalidation, (c) connected component
based invalidation, (d) tree-based invalidation.

9.2 Planar Bilateral Solver Experiments
The standard bilateral solver can be thought of as ‘averaging’ depth
within cells of the grid leading to a fronto-parallel bias. This be-
haviour is particularly exacerbated in cases like in the top row of
Figure 8, where the input point cloud offers a decent initialization,
but where the bilateral solver provides a prediction for the floor
that is off by almost 90◦. Although the input point-cloud might be
noisy, the proposed planar bilateral solver estimates solutions that
are much closer to reality than those obtained by the bilateral solver.

To quantitatively evaluate the planar bilateral solver we present
an experiment using the Middlebury Stereo Dataset V3 [Scharstein
et al. 2014]. We simulated our own stereo task by randomly deleting
99.75% of each ground-truth depthmap’s pixels by setting their val-
ues and confidences to zero, and then using these sparse depths as
input to a (planar) bilateral solver. Using the half-resolution training
images from the Middlebury dataset, we found the optimal parame-
ters for the baseline bilateral solver (our own implementation which
produces nearly identical performance to that of [Mazumdar et al.
2017]) by minimizing the geometric mean of the RMSEs for the 10

Table 2. Here we report RMSEs of our planar bilateral solver and the stan-
dard bilateral solver on a depth-inpainting task using the Middlebury Stereo
Dataset V3. On scenes containing foreshortened floors and walls the planar
solver produces a 7-15% reduction in RMSE, while performance on scenes
consisting of mostly fronto-parallel surfaces is largely unaffected.

A
di
ro
nd

ac
k

Ja
de
pl
an
t

M
ot
or
cy
cl
e

Pi
an
o

Pi
pe
s

Pl
ay
ro
om

Pl
ay
ta
bl
e

Re
cy
cl
e

Sh
el
ve
s

Vi
nt
ag
e

G
eo
.M

ea
n

Baseline Solver [2017] 11.48 35.97 16.05 9.09 16.83 13.10 10.06 8.01 8.13 16.70 13.07
Planar Bilateral Solver 11.14 34.92 15.59 8.38 16.41 12.67 8.54 8.03 8.15 14.46 12.39
Relative Improvement +2.9% +2.9% +2.8% +7.8% +2.5% +3.3% +15.1% -0.2% -0.3% +13.4% +5.2%

(a) Ground Truth Depth (b) Input Depth

(c) Baseline Solver [2017] Output (d) Planar Bilateral Solver Output

Fig. 13. A visualization of our depth-inpainting task for evaluating the
planar bilateral solver. A ground-truth depth map (a) is randomly decimated
to produce an input depth map (b) that is used as input to the standard
bilateral solver (c) and our planar bilateral solver (d). We see that the planar
solver recovers the foreshortened surfaces on the walls, floor, table, and
chair, while the baseline solver produces oversmoothed and fronto-parallel
surfaces. Depths in (a, c, d) are rendered as filled contour plots to better
emphasize gradients and level sets, and (b) is rendered by dilating the sparse
input depths for better visibility.

images (λ = 0.5, σxy = 8, σr = 4). We then evaluated this task
using a planar bilateral solver, with the same parameters as the
baseline solver and with the planar solver’s one additional param-
eter set to ϵ = 0.1 (performance was not sensitive to this value).
Results for this task can be seen in Table 2. On scenes containing
slanted ground planes and walls (e.g. ‘Piano’, ‘Playtable’) the planar
solver gives a significant improvement of 7-15%. Scenes consisting
of mostly fronto-parallel surfaces (e.g. ‘Shelves’, ‘Recycling’) yield
no improvement as the baseline bilateral solver’s assumptions are
satisfied, but do not exhibit any significant loss in quality. A visual-
ization of the output of both solvers with respect to ground truth
for a scene containing slanted surfaces can be seen in Figure 13. As
illustrated in Figure 14, it is interesting to see that even for scenes
where planar assumptions are violated, the proposed solver is able
to recover solutions that can be superior to the baseline solver.

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:15

(a) Ground Truth Depth (b) Input Depth

(c) Baseline Solver [2017] Output (d) Planar Bilateral Solver Output

Fig. 14. On scenes that violate the planar assumption of the planar bilateral
solver, the planar solver’s output closely resemble that of the baseline solver.

9.3 Temporal Consistency Evaluation
The proposed temporal filtering approach leads to results that are
significantly more temporally stable. Figure 15 shows that although
the raw depth maps might vary from one frame to the next, our
approach is capable of producing temporally stable results. Our tem-
poral consistency approach is very fast, using approximately 0.13%
of the total computation of the bilateral solver. We also compare to
computationally expensive deep neural network based approaches
that give temporally less stable results or suffer from gross errors.
In Figure 16, we evaluate the proposed warm-start strategy pre-

sented in Section 7.2. We compare warm-start initialization against
a baseline all-zero initialization and the heuristic initialization of
[Mazumdar et al. 2017], which our warm-start technique also uses
on the first frame. Not only does warm-start outperform the heuris-
tic initialization, but it requires no additional computation, thereby
letting us save 6.6% of total runtime of the solver that was previously
spent on heuristic initialization. Figure 16 shows 64 iterations of
gradient descent per frame for illustration’s sake. In practice, we
use 25 iterations per frame, which (when matching the final loss
of the solver) gives a 1.8 times speed-up compared to the baseline
solver and a 1.45 times speed-up compared to the initialization of
[Mazumdar et al. 2017], as illustrated in Figure 16 (a). The improve-
ment is even more pronounced for the planar solver, as depicted in
Figure 16 (b).

9.4 Late-stage Slicing Evaluation
In Figure 17, we show the impact of the late-stage slicing on the
resulting occlusions. Without the late-stage slicing the latency in the
depth computation becomes evident as the user moves the phone,
resulting in the occlusion boundary not aligning with the physical

Fig. 15. Temporal filtering significantly improves the stability of the pro-
duced results.

foreground object boundary. In contrast, our late-stage slicing miti-
gates this latency and produces visually pleasing occlusions where
the occlusion boundary correctly hugs the foreground object.

10 AR APPLICATIONS
In this section we demonstrate that the proposed system can effec-
tively enable occlusions for applications such as AR shopping, AR
photos as well as AR navigation. To this end, we blend a virtual AR
Asset, e.g. a virtual chair, into the RGB feed of the smartphone using
the computed depth map. In more detail, we create the composite
image C by applying a convex combination of the image I coming
from the camera feed and the virtual asset image A (created by
rendering the virtual asset from the current viewpoint). Naturally,
the weight associated to I can be set to 1 if the depth of the virtual
asset is greater then the computed depth map, and 0 otherwise.
However, we found that results are more visually pleasing when
computing the weight of A based on the distance of the virtual
object to the computed depth map as 1/(1 + e−0.5·(D−D0)), where
D and D0 are the computed and virtual depth values respectively.

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

193:16 • Valentin et al.

(a) Bilateral Solver

(b) Planar Bilateral Solver

Fig. 16. The (normalized, log) loss of a bilateral solver (a) and a planar
bilateral solver (b) on an 8-frame video sequence, with and without warm-
starting. Compared to the heuristic initialization of [Mazumdar et al. 2017],
initializing each frame’s solver to the previous solution hastens convergence,
particularly in the case of the planar solver.

Fig. 17. Impact of late-stage slicing. Left: without late-stage slicing the
latency in the depth computation becomes visible because the occlusion
boundary is not aligned with the foreground object. Right: with our late-
stage slicing the latency is mitigated and the occlusion boundary nicely
hugs the object boundary.

This results in the object gradually fading in and out when temporal
depth inconsistencies are present.

Figure 20 shows qualitative results for a variety of challenging in-
door and outdoor scenes. Note that our approach generates visually
appealing results even for challenging occluders such as untextured
walls or complex shaped plants.

Table 3. Average timings (in ms) of the different pipeline components onmid
and high end phones. These numbers were obtained by averaging run-times
over a few hundred calls while running the whole system on real data.

Stage Component A7 Pixel XL S7 S8 Pixel 2
Keyframe selection 2.6 2.3 2.0 1.7 1.3

Rectification 79.7 33.8 38.0 39.5 31.7
Dense CRF 60.0 23.7 27.1 26.2 27.2

depth map Invalidation 13.4 5.6 6.2 4.5 4.5
Triangulation 16.3 5.6 8.5 4.8 4.7
Bilateral solver 42.3 12.9 24.6 16.9 16.5
Planar solver 71.6 31.1 48.6 32.15 30.9

On-demand Late-stage slicing 5.0 1.7 2.7 2.1 1.8
rendering Rendering 0.3 0.4 0.4 0.2 0.4

10.1 Run-time breakdown
Table 3 shows the timings of the different system components for a
variety of different mid to high end phones. Note that we either use
the planar or the bilateral solver but not both. It is important to note
that although the run-time of components required for dense depth
estimation sum up to more than 33ms, the system latency is under
6ms on all devices. This latency corresponds to the run-time of the
late-stage slicing and rendering, which run independently to depth
estimation pipeline. This guarantees a smooth user experience at
30Hz across all tested smart-phones.

Fig. 18. Left and right rectified image with an imprecise relative pose. In
this example, the correspondences are 14 lines apart.

11 LIMITATIONS
The proposed system suffers from the usual limitations of monocular
depth estimation systems. A lot of components can be impacted
when the relative pose between the current frame and the selected
keyframe is imprecise. For instance, as illustrated in Figure 18, pose
imprecision can lead to correspondences that are several lines apart,
significantly increasing the difficulty of stereo matching. Robust
stereo matching can sometimes still be performed although camera
poses are imprecise, but then triangulation leads to results that
exhibits visible scale change as can be observed in Figure 19. Another
limitation comes from hardware constraints that can for instance
manifest in the form of rolling-shutter artifact and motion blur.
Finally, as it is well known in the passive-stereo literature, low-
textured areas are particularly ambiguous and performing inference
over them often lead to incorrect results.

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:17

Fig. 19. Pose imprecision can lead to sudden scale change. The top row
shows how the sparse depth evolves between two successive time stamps.
The bottom row depicts how the imprecise live poses can lead to rapid scale
changes between time t − 1 and time t despite disparities being predicted
correctly.

12 CONCLUSIONS
In this article we have presented several technical contributions that
for the first time allow predicting low-latency, edge aligned, and
dense depth-maps on a single CPU core of a mobile phone. We have
demonstrated that this method is effective in occlusion handling,
creating a plausible illusion that real and virtual objects exist in
the same environments. Directions for future work include using
deep-reinforcement learning for directly predicting occlusion masks
and working on reducing the computational requirements of such
architectures.

REFERENCES
Robert Anderson, David Gallup, Jonathan T Barron, Janne Kontkanen, Noah Snavely,

Carlos Hernández, Sameer Agarwal, and Steven M Seitz. 2016. Jump: Virtual Reality
Video. SIGGRAPH Asia 35, 6 (2016), 198.

Apple. 2018. ARKit | Apple Developer Documentation. (2018). https://developer.apple.
com/documentation/arkit

Christian Bailer, Manuel Finckh, and Hendrik PA Lensch. 2012. Scale robust multi view
stereo. In European Conference on Computer Vision. Springer, 398–411.

Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. 2009. Patch-
Match: A randomized correspondence algorithm for structural image editing. ACM
TOG 28, 24 (2009).

Jonathan T Barron, Andrew Adams, YiChang Shih, and Carlos Hernández. 2015. Fast
Bilateral-Space Stereo for Synthetic Defocus. CVPR (2015).

Jonathan T Barron and Ben Poole. 2016. The Fast Bilateral Solver. ECCV (2016).
Michael Bleyer, Christoph Rhemann, and Carsten Rother. 2011. PatchMatch Stereo-

Stereo Matching with Slanted Support Windows. BMVC (2011).
Yuri Boykov, Olga Veksler, and Ramin Zabih. 2001. Fast approximate energy minimiza-

tion via graph cuts. TPAMI (2001).
Gary Bradski and Adrian Kaehler. 2000. OpenCV. Dr. Dobbs journal of software tools 3

(2000).
Prasun Choudhury and Jack Tumblin. 2005. The trilateral filter for high contrast images

and meshes. SIGGRAPH Courses (2005).
Antonio Criminisi, Jamie Shotton, Ender Konukoglu, et al. 2012. Decision forests:

A unified framework for classification, regression, density estimation, manifold
learning and semi-supervised learning. Foundations and Trends® in Computer
Graphics and Vision (2012).

David Eigen, Christian Puhrsch, and Rob Fergus. 2014. Depth map prediction from a
single image using a multi-scale deep network. NIPS (2014).

Daniel Evangelakos andMichaelMara. 2016. Extended TimeWarp latency compensation
for virtual reality. Interactive 3D Graphics and Games (2016).

Sean Ryan Fanello, Julien Valentin, Adarsh Kowdle, Christoph Rhemann, Vladimir
Tankovich, Carlo Ciliberto, Philip Davidson, and Shahram Izadi. 2017a. Low Com-
pute and Fully Parallel Computer Vision with HashMatch. ICCV (2017).

Sean Ryan Fanello, Julien Valentin, Christoph Rhemann, Adarsh Kowdle, Vladimir
Tankovich, Philip Davidson, and Shahram Izadi. 2017b. UltraStereo: Efficient
Learning-based Matching for Active Stereo Systems. CVPR (2017).

Olivier Faugeras, Quang-Tuan Luong, and T. Papadopoulou. 2001. The Geometry of
Multiple Images: The Laws That Govern The Formation of Images of A Scene and Some
of Their Applications. MIT Press.

Yasutaka Furukawa, Brian Curless, Steven M. Seitz, and Richard Szeliski. 2009.
Manhattan-World Stereo. CVPR (2009).

Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian Reid. 2016. Unsupervised cnn
for single view depth estimation: Geometry to the rescue. ECCV (2016).

Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. 2017. Unsupervised monoc-
ular depth estimation with left-right consistency. CVPR (2017).

Google. 2018. ARCore - Google Developers Documentation. (2018). https://developers.
google.com/ar

Rostam Affendi Hamzah and Haidi Ibrahim. 2016. Literature survey on stereo vision
disparity map algorithms. Journal of Sensors (2016).

Richard Hartley and Andrew Zisserman. 2003. Multiple view geometry in computer
vision. Cambridge university press.

Richard I Hartley and Peter Sturm. 1997. Triangulation. Computer vision and image
understanding (1997).

Heiko Hirschmuller. 2008. Stereo processing by semiglobal matching and mutual
information. TPAMI (2008).

Asmaa Hosni, Christoph Rhemann, Michael Bleyer, and Margrit Gelautz. 2011. Tem-
porally consistent disparity and optical flow via efficient spatio-temporal filtering.
Pacific-Rim Symposium on Image and Video Technology (2011).

Ramesh Jain, Sandra L Bartlett, and Nancy O’Brien. 1987. Motion stereo using ego-
motion complex logarithmic mapping. IEEE Transactions on Pattern Analysis and
Machine Intelligence 3 (1987), 356–369.

Olaf Kähler, Victor Adrian Prisacariu, Carl Yuheng Ren, Xin Sun, Philip Torr, and David
Murray. 2015. Very high frame rate volumetric integration of depth images on
mobile devices. IEEE Transactions on Visualization and Computer Graphics (2015).

Kevin Karsch, Ce Liu, and Sing Bing Kang. 2016. Depth Transfer: Depth Extraction from
Videos Using Nonparametric Sampling. Dense Image Correspondences for Computer
Vision (2016).

Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan Kennedy,
Abraham Bachrach, and Adam Bry. 2017. End-to-end learning of geometry and
context for deep stereo regression. ICCV (2017).

Sameh Khamis, Sean Fanello, Christoph Rhemann, Julien Valentin, Adarsh Kowdle, and
Shahram Izadi. 2018. StereoNet: Guided Hierarchical Refinement for Edge-Aware
Depth Prediction. In ECCV.

Hanme Kim, Stefan Leutenegger, and Andrew J Davison. 2016. Real-time 3D recon-
struction and 6-DoF tracking with an event camera. ECCV (2016).

K. Klasing, D. Althoff, D. Wollherr, and M. Buss. 2009. Comparison of surface normal
estimation methods for range sensing applications. ICRA (2009).

Kalin Kolev, Petri Tanskanen, Pablo Speciale, and Marc Pollefeys. 2014. Turning mobile
phones into 3D scanners. CVPR (2014).

Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir
Navab. 2016. Deeper Depth Prediction with Fully Convolutional Residual Networks.
CoRR (2016). http://arxiv.org/abs/1606.00373

Ping Li, Dirk Farin, Rene Klein Gunnewiek, et al. 2006. On creating depth maps
from monoscopic video using structure from motion. IEEE Workshop on Content
Generation and Coding for 3D-Television (2006).

Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid. 2016. Learning depth from
single monocular images using deep convolutional neural fields. IEEE transactions
on pattern analysis and machine intelligence 38, 10 (2016), 2024–2039.

Charles Loop and Zhengyou Zhang. 1999. Computing rectifying homographies for
stereo vision. CVPR (1999).

Amrita Mazumdar, Armin Alaghi, Jonathan T. Barron, David Gallup, Luis Ceze, Mark
Oskin, and Steven M. Seitz. 2017. A Hardware-friendly Bilateral Solver for Real-time
Virtual Reality Video. High Performance Graphics (2017).

Mark Mine and Gary Bishop. 1993. Just-in-time pixels. University of North Carolina at
Chapel Hill Technical Report TR93-005 (1993).

Karsten Mühlmann, Dennis Maier, Jürgen Hesser, and Reinhard Männer. 2002. Calcu-
lating dense disparity maps from color stereo images, an efficient implementation.
IJCV (2002).

Ramakant Nevatia. 1976. Depth measurement by motion stereo. CGIP (1976).
R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. 2011. DTAM: Dense tracking and

mapping in real-time. In 2011 International Conference on Computer Vision.
Manuel M. Oliveira, Brian Bowen, Richard Mckenna, and Yu sung Chang. 2001. Fast

digital image inpainting. (2001).

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

https://developer.apple.com/documentation/arkit
https://developer.apple.com/documentation/arkit
https://developers.google.com/ar
https://developers.google.com/ar
http://arxiv.org/abs/1606.00373

193:18 • Valentin et al.

Peter Ondrúška, Pushmeet Kohli, and Shahram Izadi. 2015. Mobilefusion: Real-time
volumetric surface reconstruction and dense tracking on mobile phones. IEEE
Transactions on Visualization and Computer Graphics (2015).

Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and
Koray Kavukcuoglu. 2016. Conditional image generation with pixelcnn decoders.
In Proceedings of the 30th International Conference on Neural Information Processing
Systems. Curran Associates Inc., 4797–4805.

Liyuan Pan, Yuchao Dai, Miaomiao Liu, and Fatih Porikli. 2018. Depth Map Completion
by Jointly Exploiting Blurry Color Images and Sparse Depth Maps. WACV (2018).

Jiahao Pang, Wenxiu Sun, JS Ren, Chengxi Yang, and Qiong Yan. 2017. Cascade residual
learning: A two-stage convolutional neural network for stereo matching. (2017).

Jaesik Park, Hyeongwoo Kim, Yu-Wing Tai, Michael S Brown, and In So Kweon. 2014.
High-quality depth map upsampling and completion for RGB-D cameras. IEEE TIP
(2014).

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros.
2016. Context encoders: Feature learning by inpainting. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2536–2544.

Marc Pollefeys, Reinhard Koch, and Luc Van Gool. 1999. A simple and efficient rectifi-
cation method for general motion. ICCV (1999).

Vivek Pradeep, Christoph Rhemann, Shahram Izadi, Christopher Zach, Michael Bleyer,
and Steven Bathiche. 2013. MonoFusion: Real-time 3D Reconstruction of Small
Scenes with a Single Web Camera. ISMAR (2013).

Malcolm Reynolds, Jozef Doboš, Leto Peel, Tim Weyrich, and Gabriel J Brostow. 2011.
Capturing time-of-flight data with confidence. CVPR.

Christian Richardt, Douglas Orr, Ian Davies, Antonio Criminisi, and Neil A. Dodgson.
2010. Real-time Spatiotemporal Stereo Matching Using the Dual-Cross-Bilateral
Grid. ECCV (2010).

Christian Richardt, Carsten Stoll, Neil A Dodgson, Hans-Peter Seidel, and Christian
Theobalt. 2012. Coherent spatiotemporal filtering, upsampling and rendering of
RGBZ videos. Computer Graphics Forum (2012).

Daniel Scharstein, Heiko Hirschmuller, York Kitajima, Greg Krathwohl, Nera Nesic, Xi
Wang, and Porter Westling. 2014. High-Resolution Stereo Datasets with Subpixel-
Accurate Ground Truth. GCPR (2014).

Daniel Scharstein and Richard Szeliski. 2002. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. IJCV (2002).

Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc Pollefeys. 2016.
Pixelwise view selection for unstructured multi-view stereo. In European Conference
on Computer Vision. Springer, 501–518.

Thomas Schöps, Jakob Engel, and Daniel Cremers. 2014. Semi-dense visual odometry
for AR on a smartphone. ISMAR (2014).

Thomas Schöps, Martin R Oswald, Pablo Speciale, Shuoran Yang, and Marc Polle-
feys. 2017a. Real-Time View Correction for Mobile Devices. IEEE Transactions on
Visualization and Computer Graphics (2017).

Thomas Schöps, Torsten Sattler, Christian Häne, and Marc Pollefeys. 2017b. Large-
scale outdoor 3D reconstruction on a mobile device. Computer Vision and Image
Understanding (2017).

Jianhong Shen and Tony F Chan. 2002. Mathematical models for local nontexture
inpaintings. SIAM J. Appl. Math. (2002).

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. 2012. Indoor
segmentation and support inference from rgbd images. In European Conference on
Computer Vision. Springer, 746–760.

Supasorn Suwajanakorn, Carlos Hernandez, and Steven M Seitz. 2015. Depth from
focus with your mobile phone. CVPR (2015).

T. Taniai, Y. Matsushita, Y. Sato, and T. Naemura. 2018. Continuous 3D Label Stereo
Matching using Local Expansion Moves. PAMI (2018).

Petri Tanskanen, Kalin Kolev, Lorenz Meier, Federico Camposeco, Olivier Saurer, and
Marc Pollefeys. 2013. Live metric 3d reconstruction on mobile phones. ICCV (2013).

JMP Van Waveren. 2016. The asynchronous time warp for virtual reality on consumer
hardware. VRST (2016).

Neal Wadhwa, Rahul Garg, David E. Jacobs, Bryan E. Feldman, Nori Kanazawa, Robert
Carroll, Yair Movshovitz-Attias, Jonathan T. Barron, Yael Pritch, and Marc Levoy.
2018. Synthetic Depth-of-Field with a Single-Camera Mobile Phone. SIGGRAPH
(2018).

Caihua Wang, H. Tanahashi, H. Hirayu, Y. Niwa, and K. Yamamoto. 2001. Comparison
of local plane fitting methods for range data. CVPR (2001).

Chamara Saroj Weerasekera, Thanuja Dharmasiri, Ravi Garg, Tom Drummond, and
Ian Reid. 2018. Just-in-Time Reconstruction: Inpainting Sparse Maps using Single
View Depth Predictors as Priors. arXiv preprint arXiv:1805.04239 (2018).

O. Woodford, P. Torr, I. Reid, and A. Fitzgibbon. 2009. Global Stereo Reconstruction
under Second-Order Smoothness Priors. TPAMI (2009).

Chi Zhang, Zhiwei Li, Rui Cai, Hongyang Chao, and Yong Rui. 2014. As-Rigid-As-
Possible Stereo under Second Order Smoothness Priors. ECCV (2014).

Dandan Zhang and Yuejia Luo. 2012. Single-trial ERPs elicited by visual stimuli at two
contrast levels: Analysis of ongoing EEG and latency/amplitude jitters. ISRA (2012).

Yinda Zhang and Thomas Funkhouser. 2018. Deep Depth Completion of a Single RGB-D
Image. CVPR.

Enliang Zheng, Enrique Dunn, Vladimir Jojic, and Jan-Michael Frahm. 2014. Patchmatch
based joint view selection and depthmap estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 1510–1517.

Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe. 2017. Unsupervised
learning of depth and ego-motion from video. CVPR (2017).

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:19
C

am
er

a
fe

ed
C

om
pu

te
d

D
ep

th
AR

 A
ss

et
C

am
er

a
fe

ed
C

om
pu

te
d

D
ep

th
AR

 A
ss

et
C

am
er

a
fe

ed
C

om
pu

te
d

D
ep

th
AR

 A
ss

et

Fig. 20. Occlusion results. We show results for occlusion handling on a variety of challenging scenes for three different scenarios: online shopping (first row),
fun photos/videos (second row) and navigation last row).

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 Keyframe selection
	5 Stereo rectification
	5.1 Using polar rectified images for stereo matching.

	6 Stereo-matching
	6.1 Vectorized Inference
	6.2 Invalidation
	6.3 Disparity to depth

	7 Bilateral Solver Extensions
	7.1 Planar Bilateral Solver
	7.2 Temporal Smoothness, Warm-Start Initialization, and Late-Stage Slicing

	8 Evaluation
	8.1 Stereo-Matcher Evaluation on Middlebury Dataset
	8.2 Qualitative Comparisons with Deep Learning solutions
	8.3 Qualitative Comparisons with the iPhoneX

	9 Ablation Study
	9.1 Invalidation Experiments
	9.2 Planar Bilateral Solver Experiments
	9.3 Temporal Consistency Evaluation
	9.4 Late-stage Slicing Evaluation

	10 AR Applications
	10.1 Run-time breakdown

	11 Limitations
	12 Conclusions
	References

